-
Notifications
You must be signed in to change notification settings - Fork 1
/
pywrap.hoc
213 lines (201 loc) · 9.22 KB
/
pywrap.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// $Id: pywrap.hoc,v 1.31 2012/08/04 03:19:13 samn Exp $
//* variables
declare("INITPYWRAP",0) // whether initialized properly
//* initialize pywrap
if(2!=name_declared("p")) {
print "pywrap.hoc: loading python.hoc"
load_file("python.hoc")
}
func initpywrap () { localobj pjnk
INITPYWRAP=0
if(2!=name_declared("p")){printf("initpywrap ERR0A: PythonObject p not found in python.hoc!\n") return 0}
print p
pjnk=new PythonObject()
if(!isojt(p,pjnk)){printf("initpywrap ERR0B: PythonObject p not found in python.hoc!\n")}
if(!nrnpython("import numpy")) {printf("pypmtm ERR0C: could not import numpy python library!\n") return 0}
INITPYWRAP=1
return 1
}
initpywrap()
//** pypmtm(vec,samplingrate[,nw])
// this function calls python version of pmtm, runs multitaper power spectra, returns an nqs
obfunc pypmtm () { local sampr,spc,nw localobj vin,str,nqp,ptmp
if(!INITPYWRAP) {printf("pypmtm ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from mtspec import *")) {printf("pypmtm ERR0B: could not import mtspec python library!\n") return nil}
/* if(!nrnpython("import numpy")) {printf("pypmtm ERR0C: could not import numpy python library!\n") return nil}*/
if(numarg()==0) {printf("pypmtm(vec,samplingrate)\n") return nil}
vin=$o1 sampr=$2 str=new String()
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
spc = 1.0 / sampr // "spacing"
nw=4 if(numarg()>2) nw=$3
sprint(str.s,"[Pxx,w]=mtspec(vjnk,%g,%d)",spc,nw)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v.from_python(p.w)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pybspow(vec,samplingrate[,maxf,pord])
// this function calls python version of bsmart, to get power pectrum, returns an nqs
// pord is order of polynomial -- higher == less smoothing. default is 12
obfunc pybspow () { local sampr,pord,maxf localobj vin,str,nqp,ptmp
if(!INITPYWRAP) {printf("pybspow ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from spectrum import ar")) {printf("pybspow ERR0B: could not import spectrum python library!\n") return nil}
if(numarg()==0) {printf("pybspow(vec,samplingrate)\n") return nil}
vin=$o1 sampr=$2 str=new String()
if(numarg()>2) maxf=$3 else maxf=sampr/2
if(numarg()>3) pord=$4 else pord=64
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
sprint(str.s,"Pxx,F=ar(vjnk,rate=%g,order=%d,maxfreq=%g)",sampr,pord,maxf)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.F)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pyspecgram(vec,samplingrate[,orows])
// this function calls python version of specgram, returns an nqs
obfunc pyspecgram () { local sampr,spc,i,j,sz,f,tt,orows,a localobj vin,str,nqp,ptmp,vtmp
if(!INITPYWRAP) {printf("pyspecgram ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import specgram")) {printf("pyspecgram ERR0B: could not import specgram from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pyspecgram(vec,samplingrate)\n") return nil}
a=allocvecs(vtmp)
vin=$o1 sampr=$2 str=new String()
if(numarg()>2)orows=$3 else orows=1
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
sprint(str.s,"[Pxx,freqs,tt]=specgram(vjnk,Fs=%g)",sampr)
nrnpython(str.s)
if(orows) {
{nqp=new NQS("f","pow") nqp.odec("pow")}
{sz=p.Pxx.shape[0] nqp.clear(sz)}
for i=0,sz-1 {
{vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
nqp.append(f,vtmp)
}
} else {
nqp=new NQS("f","pow","t")
sz = p.Pxx.shape[0]
nqp.clear(sz * p.Pxx.shape[1])
for i=0,sz-1 {
{vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
for j=0,vtmp.size-1 nqp.append(f,vtmp.x(j),p.tt[j])
}
}
dealloc(a)
return nqp
}
//** pycsd(vec1,vec2,samplingrate)
// this function calls python version of csd (cross-spectral density)
// returns an nqs with csd -- csd is non-directional
obfunc pycsd () { local sampr,a localobj v1,v2,str,nqp
if(!INITPYWRAP) {printf("pycsd ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import csd")) {printf("pycsd ERR0B: could not import csd from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pycsd(vec,samplingrate)\n") return nil}
v1=$o1 v2=$o2 sampr=$3 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
{p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
sprint(str.s,"[Pxy,freqs]=csd(vjnk1,vjnk2,Fs=%g)",sampr)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxy)
return nqp
}
//** pypsd(vec,samplingrate[,NFFT])
// this function calls python version of psd (power-spectral density)
// returns an nqs with psd
obfunc pypsd () { local sampr,NFFT localobj v1,str,nqp
if(!INITPYWRAP) {printf("pypsd ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import psd")) {printf("pypsd ERR0B: could not import psd from matplotlib.mlab!\n") return nil}
// nrnpython("from matplotlib.mlab import window_none")
if(numarg()==0) {printf("pypsd(vec,samplingrate)\n") return nil}
v1=$o1 sampr=$2 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
if(numarg()>2) NFFT=$3 else NFFT=v1.size
if(sz%2==1) sz+=1
sprint(str.s,"[Pxx,freqs]=psd(vjnk1,Fs=%g,NFFT=%d)",sampr,NFFT)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pycohere(vec1,vec2,samplingrate)
// this function calls python version of cohere (coherence is normalized csd btwn vec1, vec2)
// returns an nqs with coherence
obfunc pycohere () { local sampr,a localobj v1,v2,str,nqp
if(!INITPYWRAP) {printf("pycohere ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import cohere")) {printf("pycohere ERR0B: could not import cohere from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pycohere(vec1,vec2,samplingrate)\n") return nil}
v1=$o1 v2=$o2 sampr=$3 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
{p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
sprint(str.s,"[Pxy,freqs]=cohere(vjnk1,vjnk2,Fs=%g)",sampr)
nrnpython(str.s)
nqp=new NQS("f","coh")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxy)
return nqp
}
//* pypca(matrix) - does PCA on input matrix and returns scores (projections onto PCs)
// rows of the matrix are observations, columns are 'features' or 'dimensions'
obfunc pypca () { local r,c,a localobj inm,inmT,vin,vout,str,mout
if(!INITPYWRAP) {printf("pypca ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from princomp import PCA")) {printf("pypca ERR0B: could not import PCA!\n") return nil}
if(!nrnpython("import numpy as np")){printf("pypca ERR0C: could not import numpy as np!\n") return nil}
str=new String2()
if(numarg()<1) {printf("pypca(Vector,rows,cols)\n") return nil}
a=allocvecs(vin,vout)
{inm=$o1 r=inm.nrow c=inm.ncol}
inmT = inm.transpose() // transpose since to_vector goes in column ordering
{vin.resize(r*c) inmT.to_vector(vin)}
p.vjnk = vin.to_python() // convert to python format
sprint(str.s,"vjnk=np.resize(vjnk,(%d,%d))",r,c)
if(!nrnpython(str.s)){printf("pypca ERR0D: could not run %s\n",str.s) dealloc(a) return nil}
if(!nrnpython("mypca=PCA(vjnk)")){printf("pypca ERR0E: could not run PCA\n") dealloc(a) return nil}
if(!nrnpython("score=mypca.Y")){printf("pypca ERR0F: could not set scores\n") dealloc(a) return nil}
sprint(str.s,"score=np.resize(score,(%d,1))",r*c)
if(!nrnpython(str.s)){printf("pypca ERR0E: could not run %s\n",str.s) dealloc(a) return nil}
vout.from_python(p.score) // convert to a hoc Vector
mout=new Matrix(c,r)//output as a matrix. NB: c,r are reversed from original for following transpose
mout.from_vector(vout)//from_vector uses column ordering
mout = mout.transpose()//so need to transpose
dealloc(a)
return mout
}
//* pyspecck(vec,sampr[,maxf,win]) - call ck's spectrogram.py
// vec = time-series. sampr = sampling rate (Hz).
// maxf = max frequency. win = window size (seconds) for specgram chunks
// system call to spectrogram.py file to display a spectrogram, writes temp
// file and then deletes it...
func pyspecck () { local i,sampr,maxf,win localobj fp,vec,str
vec=$o1 sampr=$2
if(numarg()>2)maxf=$3 else maxf=sampr/2
if(numarg()>3)win=$4 else win=1
str=new String2()
fp=new File()
if(!fp.mktemp()){printf("pyspecck ERR0: couldn't make temp file!\n") return 0}
str.s=fp.getname()
fp.wopen(str.s)
for i=0,vec.size-1 fp.printf("%g\n",vec.x(i))
fp.close()
sprint(str.t,"/usr/site/nrniv/local/python/spectrogram.py %s %g %g %g",str.s,sampr,maxf,win)
print str.t
system(str.t)
fp.unlink()
return 1
}
//* pykstest(vec1,vec2) - perform a two-sample, two-sided kolmogorov-smirnov test
// and return the p-value. kstest checks if values in vec1,vec2 come from same distribution (null hypothesis)
// returns -1 on failure. uses scipy.stats.ks_2samp function
func pykstest () { localobj v1,v2
if(!INITPYWRAP) {printf("pykstest ERR0A: python.hoc not initialized properly\n") return -1}
{v1=$o1 v2=$o2}
if(!nrnpython("from scipy.stats import ks_2samp")) return -1
{p.v1=v1.to_python() p.v2=v2.to_python()}
if(!nrnpython("(D,pval)=ks_2samp(v1,v2)")) return -1
return p.pval
}