-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOLM_cell.py
63 lines (50 loc) · 1.23 KB
/
OLM_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
'''
SOM (putative OLM) cell model
@author: Ferguson et al. (2015) Front. Sys. Neurosci.
'''
from brian import *
defaultclock.dt = 0.02*ms
#OLM cell parameters
C=180 * pF
vr=-62.2 * mV
vpeak=6.4 * mV
c=-69.9 * mV
N=1
klow=2 * nS/mV
khigh=10 * nS/mV
a=0.0001 /ms
d=2.6 * pA
vt=-53.3 *mV
b=1 * nS
N=1 #number of cells
mean_Iapp=100 #mean Iapplied input
Ishift_raw=40 # Ishift
time=0
#cell eqns
olm_eqs = """
Iext : amp
Ishift : amp
k=(v<vt)*klow+(v>=vt)*khigh : (siemens/volt)
du/dt = a*(b*(v-vr)-u) : amp
dv/dt = (k*(v-vr)*(v-vt)+Ishift+Iext -u)/C : volt
"""
#define neuron group
OLM = NeuronGroup(N, model=olm_eqs, reset ="v = c; u += d" , threshold="v>=vpeak")
#set excitatory drive
OLM.Iext = mean_Iapp*pA
#set Ishift
OLM.Ishift = Ishift_raw*pA
#set initial conditions for each neuron
OLM.v = rand(len(OLM))*0.01 -0.065
#record all spike times for the neuron group
OLM_v = StateMonitor(OLM, 'v', record=True)
#run for x seconds of simulated time
duration = 1 * second # 0.01 * second
net =Network(OLM,OLM_v)
net.run(duration)
####make plot of membrane potential ####
plot(OLM_v.times,OLM_v[0]/mV)
xlabel("Time (s)")
ylabel("Membrane Potential (mV)")
title('OLM cell model with %d pA input'%(mean_Iapp))
show()