-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtca.mod
113 lines (90 loc) · 1.74 KB
/
tca.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
TITLE T-calcium channel From Migliore CA3
: T-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
v (mV)
celsius = 6.3 (degC)
gcatbar=.003 (mho/cm2)
cai (mM)
cao (mM)
}
NEURON {
SUFFIX cat
USEION tca READ etca WRITE itca VALENCE 2
USEION ca READ cai, cao VALENCE 2
RANGE gcatbar,cai, itca, etca
}
STATE {
m h
}
ASSIGNED {
itca (mA/cm2)
gcat (mho/cm2)
etca (mV)
}
INITIAL {
m = minf(v)
h = hinf(v)
VERBATIM
cai=_ion_cai;
ENDVERBATIM
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcat = gcatbar*m*m*h
itca = gcat*ghk(v,cai,cao)
}
DERIVATIVE states { : exact when v held constant
m' = (minf(v) - m)/m_tau(v)
h' = (hinf(v) - h)/h_tau(v)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (DegC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION hinf(v(mV)) {
LOCAL a,b
TABLE FROM -150 TO 150 WITH 200
a = 1.e-6*exp(-v/16.26)
b = 1/(exp((-v+29.79)/10)+1)
hinf = a/(a+b)
}
FUNCTION minf(v(mV)) {
LOCAL a,b
TABLE FROM -150 TO 150 WITH 200
a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
b = 0.009*exp(-v/22.03)
minf = a/(a+b)
}
FUNCTION m_tau(v(mV)) (ms) {
LOCAL a,b
TABLE FROM -150 TO 150 WITH 200
a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
b = 0.009*exp(-v/22.03)
m_tau = 1/(a+b)
}
FUNCTION h_tau(v(mV)) (ms) {
LOCAL a,b
TABLE FROM -150 TO 150 WITH 200
a = 1.e-6*exp(-v/16.26)
b = 1/(exp((-v+29.79)/10.)+1.)
h_tau = 1/(a+b)
}