-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
132 lines (116 loc) · 6.32 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os, argparse, time, datetime, sys, shutil, stat, torch
import numpy as np
from torch.autograd import Variable
from torch.utils.data import DataLoader
from util.MF_dataset import MF_dataset
from util.util import compute_results, visualize
from sklearn.metrics import confusion_matrix
from model import propose
#############################################################################################
parser = argparse.ArgumentParser(description='Test with pytorch')
#############################################################################################
parser.add_argument('--model_name', '-m', type=str, default='propose1') # propose1 or propose2 or propose3
parser.add_argument('--weight_name', '-w', type=str, default='rgb', help='Weight from the runs dic')
parser.add_argument('--file_name', '-f', type=str, default='best.pth', help='pth in weight name')
parser.add_argument('--dataset_split', '-d', type=str, default='test')
parser.add_argument('--gpu', '-g', type=int, default=0)
#############################################################################################
parser.add_argument('--img_height', '-ih', type=int, default=480)
parser.add_argument('--img_width', '-iw', type=int, default=640)
parser.add_argument('--num_workers', '-j', type=int, default=0)
parser.add_argument('--n_class', '-nc', type=int, default=2)
parser.add_argument('--data_dir', '-dr',type=str, default='/home/sj/Desktop/dataset')
args = parser.parse_args()
#############################################################################################
if __name__ == '__main__':
torch.cuda.set_device(args.gpu)
print("\nthe pytorch version:", torch.__version__)
print("the gpu count:", torch.cuda.device_count())
print("the current used gpu:", torch.cuda.current_device(), '\n')
model_dir = os.path.join('./runs/', args.weight_name)
if os.path.exists(model_dir) is False:
sys.exit("the %s does not exit." % (model_dir))
model_file = os.path.join(model_dir, args.file_name)
if os.path.exists(model_file) is True:
print('use the final model file.')
else:
sys.exit('no model file found.')
print('Inference %s: %s on GPU #%d with pytorch' % (args.model_name, args.weight_name, args.gpu))
conf_total = np.zeros((args.n_class, args.n_class))
#set the model
model = propose(args.n_class)
if args.gpu >= 0: model.cuda(args.gpu)
print('loading model file %s... ' % model_file)
pretrained_weight = torch.load(model_file, map_location=lambda storage, loc: storage.cuda(args.gpu))
own_state = model.state_dict()
for name, param in pretrained_weight.items():
if name not in own_state:
continue
own_state[name].copy_(param)
print('done!')
for name, param in pretrained_weight.items():
if name not in own_state:
print(name)
continue
own_state[name].copy_(param)
print('done!')
batch_size = 1 # do not change this parameter!
test_dataset = MF_dataset(data_dir=args.data_dir, split=args.dataset_split, input_h=args.img_height,
input_w=args.img_width)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
ave_time_cost = 0.0
model.eval()
with torch.no_grad():
for it, (images, labels, names) in enumerate(test_loader):
images = Variable(images).cuda(args.gpu)
labels = Variable(labels).cuda(args.gpu)
start_time = time.time()
logits = model(images)
end_time = time.time()
if it >= 5: # # ignore the first 5 frames
ave_time_cost += (end_time - start_time)
# convert tensor to numpy 1d array
label = labels.cpu().numpy().squeeze().flatten()
prediction = logits.argmax(1).cpu().numpy().squeeze().flatten() # prediction and label are both 1-d array, size: minibatch*640*480
# generate confusion matrix frame-by-frame
conf = confusion_matrix(y_true=label, y_pred=prediction, labels=[0, 1]) # conf is an n*n matrix, vertical axis: groundtruth, horizontal axis: prediction
conf_total += conf
# save demo images
visualize(image_name=names, predictions=logits.argmax(1), weight_name='Pred_' + args.weight_name)
print("%s, %s, frame %d/%d, %s, time cost: %.2f ms, demo result saved."
% (
args.model_name, args.weight_name, it + 1, len(test_loader), names,
(end_time - start_time) * 1000))
precision_per_class, recall_per_class, iou_per_class = compute_results(conf_total)
conf_total_matfile = os.path.join('./runs/Pred_' + args.weight_name, 'conf_' + args.weight_name + '.mat')
print('\n###########################################################################')
print('\n%s: %s test results (with batch size %d) on %s using %s:' % (
args.model_name, args.weight_name, batch_size, datetime.date.today(), torch.cuda.get_device_name(args.gpu)))
print('\n* the tested dataset name: %s' % args.dataset_split)
print('* the tested image count: %d' % len(test_loader))
print('* the tested image size: %d*%d' % (args.img_height, args.img_width))
print('* the weight name: %s' % args.weight_name)
print('* the file name: %s' % args.file_name)
print(
"* recall per class: \n Background: %.6f, circle: %.6f"
% (recall_per_class[0], recall_per_class[1]))
print(
"* iou per class: \n Background: %.6f, circle: %.6f" \
% (iou_per_class[0], iou_per_class[1],))
print("\n* average values (np.mean(x)): \n recall: %.6f, iou: %.6f" \
% (recall_per_class.mean() *100, iou_per_class.mean()*100))
print(
'\n* the average time cost per frame (with batch size %d): %.2f ms, namely, the inference speed is %.2f fps' % (
batch_size, ave_time_cost * 1000 / (len(test_loader) - 5),
1.0 / (ave_time_cost / (len(test_loader) - 5)))) # ignore the first 10 frames
print('\n* the total confusion matrix: ')
np.set_printoptions(precision=2, threshold=np.inf, linewidth=np.inf, suppress=True)
print(conf_total)
print('\n###########################################################################')