Semantic Segmentation of Agricultural Crop Multispectral Image Using Feature Fusion
This repository contains the code for my paper: Semantic Segmentation of Agricultural Crop Multispectral Image Using Feature Fusion .
Due to circumstances, we are unable to provide our own dataset. sorry.
<dataset>
│
├── rgb # rgb images
│ ├── image_1.JPG
│ ├── image_2.JPG
│ └── ...
│
├── etc multispectral # another multispectral images dic ex) blue, green, nir, re ---
│ ├── image_1.TIF
│ ├── image_2.TIF
│ └── ...
│
├── labels # label images
│ ├── image_1.png
│ ├── image_2.png
│ └── ...
│
├── train.txt
└── test.txt # Train-test split.
<train.txt>
image_1
image_2
...
<test.txt>
...
image_n-1
image_n
We used ndvi as the name of the etc multispectral folder and used the TIF image as the dataset.
In the getitem function of class MF_dataset in MF_dataset.py, change the folder name and extension name to suit your dataset.
This code was tested on linux
and requires:
- Python 3.8
- conda3 or miniconda3
- CUDA capable GPU (one is enough)
conda create --name <your env name> --file environment.yml
python train.py
The results will be rendered and put in ./runs/
python inference.py
The results will be rendered and put in ./result/