-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcw_attack.py
422 lines (390 loc) · 20.1 KB
/
cw_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
# borrowed from https://github.com/kkew3/pytorch-cw2/blob/master/cw.py
class L2Adversary:
"""
The L2 attack adversary. To enforce the box constraint, the
change-of-variable trick using tanh-space is adopted.
The loss function to optimize:
.. math::
\\|\\delta\\|_2^2 + c \\cdot f(x + \\delta)
where :math:`f` is defined as
.. math::
f(x') = \\max\\{0, (\\max_{i \\ne t}{Z(x')_i} - Z(x')_t) \\cdot \\tau + \\kappa\\}
where :math:`\\tau` is :math:`+1` if the adversary performs targeted attack;
otherwise it's :math:`-1`.
Usage::
attacker = L2Adversary()
# inputs: a batch of input tensors
# targets: a batch of attack targets
# model: the model to attack
advx = attacker(model, inputs, targets)
The change-of-variable trick
++++++++++++++++++++++++++++
Let :math:`a` be a proper affine transformation.
1. Given input :math:`x` in image space, map :math:`x` to "tanh-space" by
.. math:: \\hat{x} = \\tanh^{-1}(a^{-1}(x))
2. Optimize an adversarial perturbation :math:`m` without constraint in the
"tanh-space", yielding an adversarial example :math:`w = \\hat{x} + m`; and
3. Map :math:`w` back to the same image space as the one where :math:`x`
resides:
.. math::
x' = a(\\tanh(w))
where :math:`x'` is the adversarial example, and :math:`\\delta = x' - x`
is the adversarial perturbation.
Since the composition of affine transformation and hyperbolic tangent is
strictly monotonic, $\\delta = 0$ if and only if $m = 0$.
Symbols used in docstring
+++++++++++++++++++++++++
- ``B``: the batch size
- ``C``: the number of channels
- ``H``: the height
- ``W``: the width
- ``M``: the number of classes
"""
def __init__(self, confidence=0.0, c_range=(1e-3, 1e10),
search_steps=5, max_steps=500, abort_early=True,
box=(0., 1.), optimizer_lr=1e-2):
"""
:param confidence: the confidence constant, i.e. the $\\kappa$ in paper
:type confidence: float
:param c_range: the search range of the constant :math:`c`; should be a
tuple of form (lower_bound, upper_bound)
:type c_range: Tuple[float, float]
:param search_steps: the number of steps to perform binary search of
the constant :math:`c` over ``c_range``
:type search_steps: int
:param max_steps: the maximum number of optimization steps for each
constant :math:`c`
:type max_steps: int
:param abort_early: ``True`` to abort early in process of searching for
:math:`c` when the loss virtually stops increasing
:type abort_early: bool
:param box: a tuple of lower bound and upper bound of the box
:type box: Tuple[float, float]
:param optimizer_lr: the base learning rate of the Adam optimizer used
over the adversarial perturbation in clipped space
:type optimizer_lr: float
:param init_rand: ``True`` to initialize perturbation to small Gaussian;
False is consistent with the original paper, where the
perturbation is initialized to zero
Why to make ``box`` default to (-1., 1.) rather than (0., 1.)? TL;DR the
domain of the problem in pytorch is [-1, 1] instead of [0, 1].
According to Xiang Xu (samxucmu@gmail.com)::
> The reason is that in pytorch a transformation is applied first
> before getting the input from the data loader. So image in range [0,1]
> will subtract some mean and divide by std. The normalized input image
> will now be in range [-1,1]. For this implementation, clipping is
> actually performed on the image after normalization, not on the
> original image.
Why to ``optimizer_lr`` default to 1e-2? The optimizer used in Carlini's
code adopts 1e-2. In another pytorch implementation
(https://github.com/rwightman/pytorch-nips2017-attack-example.git),
though, the learning rate is set to 5e-4.
"""
if len(c_range) != 2:
raise TypeError('c_range ({}) should be of form '
'tuple([lower_bound, upper_bound])'
.format(c_range))
if c_range[0] >= c_range[1]:
raise ValueError('c_range lower bound ({}) is expected to be less '
'than c_range upper bound ({})'.format(*c_range))
if len(box) != 2:
raise TypeError('box ({}) should be of form '
'tuple([lower_bound, upper_bound])'
.format(box))
if box[0] >= box[1]:
raise ValueError('box lower bound ({}) is expected to be less than '
'box upper bound ({})'.format(*box))
self.confidence = float(confidence)
self.c_range = (float(c_range[0]), float(c_range[1]))
self.binary_search_steps = search_steps
self.max_steps = max_steps
self.abort_early = abort_early
self.ae_tol = 1e-4 # tolerance of early abort
self.box = tuple(map(float, box))
self.optimizer_lr = optimizer_lr
# Since the larger the `scale_const` is, the more likely a successful
# attack can be found, `self.repeat` guarantees at least attempt the
# largest scale_const once. Moreover, since the optimal criterion is the
# L2 norm of the attack, and the larger `scale_const` is, the larger
# the L2 norm is, thus less optimal, the last attempt at the largest
# `scale_const` won't ruin the optimum ever found.
self.repeat = (self.binary_search_steps >= 10)
def __call__(self, model, inputs, targets, num_classes=10):
"""
Produce adversarial examples for ``inputs``.
:param model: the model to attack
:type model: nn.Module
:param inputs: the original images tensor, of dimension [B x C x H x W].
``inputs`` can be on either CPU or GPU, but it will eventually be
moved to the same device as the one the parameters of ``model``
reside
:type inputs: torch.FloatTensor
:param targets: the original image labels, or the attack targets, of
dimension [B]. If ``self.targeted`` is ``True``, then ``targets``
is treated as the attack targets, otherwise the labels.
``targets`` can be on either CPU or GPU, but it will eventually
be moved to the same device as the one the parameters of
``model`` reside
:type targets: torch.LongTensor
:param to_numpy: True to return an `np.ndarray`, otherwise,
`torch.FloatTensor`
:type to_numpy: bool
:return: the adversarial examples on CPU, of dimension [B x C x H x W]
"""
# sanity check
assert isinstance(model, nn.Module)
assert len(inputs.size()) == 4
assert len(targets.size()) == 1
# get a copy of targets in numpy before moving to GPU, used when doing
# the binary search on `scale_const`
targets_np = targets.clone().cpu().numpy() # type: np.ndarray
# the type annotations here are used only for type hinting and do
# not indicate the actual type (cuda or cpu); same applies to all codes
# below
batch_size = inputs.size(0) # type: int
# `lower_bounds_np`, `upper_bounds_np` and `scale_consts_np` are used
# for binary search of each `scale_const` in the batch. The element-wise
# inquality holds: lower_bounds_np < scale_consts_np <= upper_bounds_np
lower_bounds_np = np.zeros(batch_size)
upper_bounds_np = np.ones(batch_size) * self.c_range[1]
scale_consts_np = np.ones(batch_size) * self.c_range[0]
# Optimal attack to be found.
# The three "placeholders" are defined as:
# - `o_best_l2`: the least L2 norms
# - `o_best_l2_ppred`: the perturbed predictions made by the adversarial
# perturbations with the least L2 norms
# - `o_best_advx`: the underlying adversarial example of
# `o_best_l2_ppred`
o_best_l2 = np.ones(batch_size) * np.inf
o_best_l2_ppred = -np.ones(batch_size)
o_best_advx = inputs.clone().cpu().numpy() # type: np.ndarray
# convert `inputs` to tanh-space
inputs_tanh = self._to_tanh_space(inputs) # type: torch.FloatTensor
inputs_tanh_var = Variable(inputs_tanh, requires_grad=False)
# the one-hot encoding of `targets`
targets_oh = torch.zeros(targets.size() + (num_classes,)).to(inputs.device) # type: torch.FloatTensor
targets_oh.scatter_(1, targets.unsqueeze(1), 1.0)
targets_oh_var = Variable(targets_oh, requires_grad=False)
# the perturbation variable to optimize.
# `pert_tanh` is essentially the adversarial perturbation in tanh-space.
# In Carlini's code it's denoted as `modifier`
pert_tanh = torch.zeros(inputs.size()).to(inputs.device) # type: torch.FloatTensor
pert_tanh_var = Variable(pert_tanh, requires_grad=True)
optimizer = optim.Adam([pert_tanh_var], lr=self.optimizer_lr)
for sstep in range(self.binary_search_steps):
if self.repeat and sstep == self.binary_search_steps - 1:
scale_consts_np = upper_bounds_np
scale_consts = torch.from_numpy(np.copy(scale_consts_np)).float().to(
inputs.device) # type: torch.FloatTensor
scale_consts_var = Variable(scale_consts, requires_grad=False)
# the minimum L2 norms of perturbations found during optimization
best_l2 = np.ones(batch_size) * np.inf
# the perturbed predictions corresponding to `best_l2`, to be used
# in binary search of `scale_const`
best_l2_ppred = -np.ones(batch_size)
# previous (summed) batch loss, to be used in early stopping policy
prev_batch_loss = np.inf # type: float
for optim_step in range(self.max_steps):
batch_loss, pert_norms_np, pert_outputs_np, advxs_np = \
self._optimize(model, optimizer, inputs_tanh_var,
pert_tanh_var, targets_oh_var,
scale_consts_var)
if self.abort_early and not optim_step % (self.max_steps // 10):
if batch_loss > prev_batch_loss * (1 - self.ae_tol):
break
prev_batch_loss = batch_loss
# update best attack found during optimization
pert_predictions_np = np.argmax(pert_outputs_np, axis=1)
comp_pert_predictions_np = np.argmax(
self._compensate_confidence(pert_outputs_np, targets_np),
axis=1)
for i in range(batch_size):
l2 = pert_norms_np[i]
cppred = comp_pert_predictions_np[i]
ppred = pert_predictions_np[i]
tlabel = targets_np[i]
ax = advxs_np[i]
if self._attack_successful(cppred, tlabel):
assert cppred == ppred
if l2 < best_l2[i]:
best_l2[i] = l2
best_l2_ppred[i] = ppred
if l2 < o_best_l2[i]:
o_best_l2[i] = l2
o_best_l2_ppred[i] = ppred
o_best_advx[i] = ax
# binary search of `scale_const`
for i in range(batch_size):
tlabel = targets_np[i]
assert best_l2_ppred[i] == -1 or \
self._attack_successful(best_l2_ppred[i], tlabel)
assert o_best_l2_ppred[i] == -1 or \
self._attack_successful(o_best_l2_ppred[i], tlabel)
if best_l2_ppred[i] != -1:
# successful; attempt to lower `scale_const` by halving it
if scale_consts_np[i] < upper_bounds_np[i]:
upper_bounds_np[i] = scale_consts_np[i]
# `upper_bounds_np[i] == c_range[1]` implies no solution
# found, i.e. upper_bounds_np[i] has never been updated by
# scale_consts_np[i] until
# `scale_consts_np[i] > 0.1 * c_range[1]`
if upper_bounds_np[i] < self.c_range[1] * 0.1:
scale_consts_np[i] = (lower_bounds_np[i] + upper_bounds_np[i]) / 2
else:
# failure; multiply `scale_const` by ten if no solution
# found; otherwise do binary search
if scale_consts_np[i] > lower_bounds_np[i]:
lower_bounds_np[i] = scale_consts_np[i]
if upper_bounds_np[i] < self.c_range[1] * 0.1:
scale_consts_np[i] = (lower_bounds_np[i] + upper_bounds_np[i]) / 2
else:
scale_consts_np[i] *= 10
return torch.from_numpy(o_best_advx).float()
def _optimize(self, model, optimizer, inputs_tanh_var, pert_tanh_var,
targets_oh_var, c_var):
"""
Optimize for one step.
:param model: the model to attack
:type model: nn.Module
:param optimizer: the Adam optimizer to optimize ``modifier_var``
:type optimizer: optim.Adam
:param inputs_tanh_var: the input images in tanh-space
:type inputs_tanh_var: Variable
:param pert_tanh_var: the perturbation to optimize in tanh-space,
``pert_tanh_var.requires_grad`` flag must be set to True
:type pert_tanh_var: Variable
:param targets_oh_var: the one-hot encoded target tensor (the attack
targets if self.targeted else image labels)
:type targets_oh_var: Variable
:param c_var: the constant :math:`c` for each perturbation of a batch,
a Variable of FloatTensor of dimension [B]
:type c_var: Variable
:return: the batch loss, squared L2-norm of adversarial perturbations
(of dimension [B]), the perturbed activations (of dimension
[B]), the adversarial examples (of dimension [B x C x H x W])
"""
# the adversarial examples in the image space
# of dimension [B x C x H x W]
advxs_var = self._from_tanh_space(inputs_tanh_var + pert_tanh_var) # type: Variable
# the perturbed activation before softmax
pert_outputs_var = model(advxs_var) # type: Variable
# the original inputs
inputs_var = self._from_tanh_space(inputs_tanh_var) # type: Variable
perts_norm_var = torch.pow(advxs_var - inputs_var, 2)
perts_norm_var = torch.sum(perts_norm_var.view(
perts_norm_var.size(0), -1), 1)
# In Carlini's code, `target_activ_var` is called `real`.
# It should be a Variable of tensor of dimension [B], such that the
# `target_activ_var[i]` is the final activation (right before softmax)
# of the $t$th class, where $t$ is the attack target or the image label
#
# noinspection PyArgumentList
target_activ_var = torch.sum(targets_oh_var * pert_outputs_var, 1)
inf = 1e4 # sadly pytorch does not work with np.inf;
# 1e4 is also used in Carlini's code
# In Carlini's code, `maxother_activ_var` is called `other`.
# It should be a Variable of tensor of dimension [B], such that the
# `maxother_activ_var[i]` is the maximum final activation of all classes
# other than class $t$, where $t$ is the attack target or the image
# label.
#
# The assertion here ensures (sufficiently yet not necessarily) the
# assumption behind the trick to get `maxother_activ_var` holds, that
# $\max_{i \ne t}{o_i} \ge -\text{_inf}$, where $t$ is the target and
# $o_i$ the $i$th element along axis=1 of `pert_outputs_var`.
#
# noinspection PyArgumentList
assert (pert_outputs_var.max(1)[0] >= -inf).all(), 'assumption failed'
# noinspection PyArgumentList
maxother_activ_var = torch.max(((1 - targets_oh_var) * pert_outputs_var
- targets_oh_var * inf), 1)[0]
# Compute $f(x')$, where $x'$ is the adversarial example in image space.
# The result `f_var` should be of dimension [B]
# if not targeted, optimize to make `maxother_activ_var` larger than
# `target_activ_var` (the ground truth image labels) by
# `self.confidence`
#
# noinspection PyArgumentList
f_var = torch.clamp(target_activ_var - maxother_activ_var + self.confidence, min=0.0)
# the total loss of current batch, should be of dimension [1]
batch_loss_var = torch.sum(perts_norm_var + c_var * f_var) # type: Variable
# Do optimization for one step
optimizer.zero_grad()
batch_loss_var.backward()
optimizer.step()
# Make some records in python/numpy on CPU
batch_loss = batch_loss_var.item() # type: float
pert_norms_np = L2Adversary._var2numpy(perts_norm_var)
pert_outputs_np = L2Adversary._var2numpy(pert_outputs_var)
advxs_np = L2Adversary._var2numpy(advxs_var)
return batch_loss, pert_norms_np, pert_outputs_np, advxs_np
def _attack_successful(self, prediction, target):
"""
See whether the underlying attack is successful.
:param prediction: the prediction of the model on an input
:type prediction: int
:param target: either the attack target or the ground-truth image label
:type target: int
:return: ``True`` if the attack is successful
:rtype: bool
"""
return prediction != target
# noinspection PyUnresolvedReferences
def _compensate_confidence(self, outputs, targets):
"""
Compensate for ``self.confidence`` and returns a new weighted sum
vector.
:param outputs: the weighted sum right before the last layer softmax
normalization, of dimension [B x M]
:type outputs: np.ndarray
:param targets: either the attack targets or the real image labels,
depending on whether or not ``self.targeted``, of dimension [B]
:type targets: np.ndarray
:return: the compensated weighted sum of dimension [B x M]
:rtype: np.ndarray
"""
outputs_comp = np.copy(outputs)
rng = np.arange(targets.shape[0])
# for each image $i$:
# if not targeted, `max(outputs[i, ~target_onehot]` should be larger
# than `outputs[i, target_onehot]` (the ground truth image labels)
# by `self.confidence`
outputs_comp[rng, targets] += self.confidence
return outputs_comp
def _to_tanh_space(self, x):
"""
Convert a batch of tensors to tanh-space.
:param x: the batch of tensors, of dimension [B x C x H x W]
:return: the batch of tensors in tanh-space, of the same dimension
"""
return L2Adversary.to_tanh_space(x, self.box)
def _from_tanh_space(self, x):
"""
Convert a batch of tensors from tanh-space to input space.
:param x: the batch of tensors, of dimension [B x C x H x W]
:return: the batch of tensors in tanh-space, of the same dimension;
the returned tensor is on the same device as ``x``
"""
return L2Adversary.from_tanh_space(x, self.box)
@staticmethod
def _var2numpy(var):
return var.data.cpu().numpy()
@staticmethod
def atanh(x, eps=1e-6):
x = x * (1 - eps)
return 0.5 * torch.log((1.0 + x) / (1.0 - x))
@staticmethod
def to_tanh_space(x, box):
_box_mul = (box[1] - box[0]) * 0.5
_box_plus = (box[1] + box[0]) * 0.5
return L2Adversary.atanh((x - _box_plus) / _box_mul)
@staticmethod
def from_tanh_space(x, box):
_box_mul = (box[1] - box[0]) * 0.5
_box_plus = (box[1] + box[0]) * 0.5
return torch.tanh(x) * _box_mul + _box_plus