-
Notifications
You must be signed in to change notification settings - Fork 3
/
generate_32.py
72 lines (67 loc) · 2.85 KB
/
generate_32.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from networks_32 import Generator
from test_networks_32 import test_Generator
import tensorflow as tf
import numpy as np
from PIL import Image
from utils import truncated_noise_sample
import os
NUMS_GEN = 64
NUMS_CLASS = 10
BATCH_SIZE = 64
Z_DIM = 128
IMG_H = 32
IMG_W = 32
def Consecutive_category_morphing():
if not os.path.exists("./generate"):
os.mkdir("./generate")
train_phase = tf.placeholder(tf.bool)
z = tf.placeholder(tf.float32, [BATCH_SIZE, Z_DIM])
y1 = tf.placeholder(tf.int32, [None])
y2 = tf.placeholder(tf.int32, [None])
alpha = tf.placeholder(tf.float32, [None, 1])
G = test_Generator("generator")
fake_img = G(z, train_phase, y1, y2, NUMS_CLASS, alpha)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator"))
saver.restore(sess, "./save_para/.\\model.ckpt")
Z = truncated_noise_sample(BATCH_SIZE, Z_DIM)
CLASS1 = 2
CLASS2 = 3
count = 0
for ALPHA in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
ALPHA = np.ones([BATCH_SIZE, 1]) * ALPHA
FAKE_IMG = sess.run(fake_img, feed_dict={z: Z, y1: CLASS1 * np.ones([BATCH_SIZE]), y2: CLASS2 * np.ones([BATCH_SIZE]), train_phase: False, alpha: ALPHA})
concat_img = np.zeros([8 * IMG_H, 8 * IMG_W, 3])
c = 0
for i in range(8):
for j in range(8):
concat_img[i * IMG_H:i * IMG_H + IMG_H, j * IMG_W:j * IMG_W + IMG_W] = FAKE_IMG[c]
c += 1
Image.fromarray(np.uint8((concat_img + 1) * 127.5)).save("./generate/" + str(count) + ".jpg")
count += 1
def generate():
if not os.path.exists("./generate"):
os.mkdir("./generate")
train_phase = tf.placeholder(tf.bool)
z = tf.placeholder(tf.float32, [BATCH_SIZE, Z_DIM])
y = tf.placeholder(tf.int32, [None])
G = Generator("generator")
fake_img = G(z, train_phase, y, NUMS_CLASS)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator"))
saver.restore(sess, "./save_para/.\\model.ckpt")
Z = truncated_noise_sample(BATCH_SIZE, Z_DIM)
for nums_c in range(NUMS_CLASS):
Z = truncated_noise_sample(BATCH_SIZE, Z_DIM)
FAKE_IMG = sess.run(fake_img, feed_dict={z: Z, train_phase: False, y: nums_c * np.ones([NUMS_GEN])})
concat_img = np.zeros([8*IMG_H, 8*IMG_W, 3])
c = 0
for i in range(8):
for j in range(8):
concat_img[i*IMG_H:i*IMG_H+IMG_H, j*IMG_W:j*IMG_W+IMG_W] = FAKE_IMG[c]
c += 1
Image.fromarray(np.uint8((concat_img + 1) * 127.5)).save("./generate/"+str(nums_c)+".jpg")
if __name__ == "__main__":
Consecutive_category_morphing()