-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathuns_train_copy.py
349 lines (304 loc) · 14.1 KB
/
uns_train_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import dgl
import numpy as np
import pandas as pd
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import dgl.multiprocessing as mp
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from dgl.data import RedditDataset
from torch.nn.parallel import DistributedDataParallel
import tqdm
from dgl.data import load_data#########
import random
import os
import torch
import utils
from model import SAGE, compute_acc_unsupervised as compute_acc
from negative_sampler import NegativeSampler
import torch
import get_args
class DeepGraphInfomax(torch.nn.Module):
def __init__(self, hidden_channels, device):
super().__init__()
self.hidden_channels = hidden_channels
self.linear = nn.Sequential(nn.Dropout(p=0.2),
nn.Linear(hidden_channels, hidden_channels),
# nn.ReLU(),
).to(device)
self.linear_2 = nn.Sequential(nn.Dropout(p=0.2),
nn.Linear(hidden_channels, hidden_channels),
# nn.PReLU(hidden_channels),
).to(device)
def corruption(self, x, adj_t):
return x[torch.randperm(x.size(0))], adj_t
def summary(self, x):
return x.mean(dim=0)
def make_loss(self, encoder, embeddings, x,subgraph):
embeddings = self.linear_2(embeddings)
#cor_x, cor_adj_t = self.corruption(x, adj_t)
encoder(subgraph,x)
neg_z =encoder.get_e()
neg_z = self.linear_2(neg_z)
summary = self.linear(self.summary(embeddings))
pos_loss = -torch.log(
self.discriminate(embeddings, summary, sigmoid=True) + 0.001).mean()
neg_loss = -torch.log(1 -
self.discriminate(neg_z, summary, sigmoid=True) +
0.001).mean()
return pos_loss + neg_loss
def discriminate(self, z, summary, sigmoid=True):
sim_value = torch.matmul(z, summary)
return torch.sigmoid(sim_value) if sigmoid else sim_value
class CrossEntropyLoss(nn.Module):
def forward(self, block_outputs, pos_graph, neg_graph):
with pos_graph.local_scope():
pos_graph.ndata['h'] = block_outputs
pos_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
pos_score = pos_graph.edata['score']
with neg_graph.local_scope():
neg_graph.ndata['h'] = block_outputs
neg_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
neg_score = neg_graph.edata['score']
score = th.cat([pos_score, neg_score])
label = th.cat([th.ones_like(pos_score), th.zeros_like(neg_score)]).long()
loss = F.binary_cross_entropy_with_logits(score, label.float())
return loss
def evaluate(model, g, nfeat, labels, train_nids, val_nids, test_nids, device):
"""
Evaluate the model on the validation set specified by ``val_mask``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
# single gpu
if isinstance(model, SAGE):
pred = model.inference(g, nfeat, device, args.batch_size, args.num_workers)
# multi gpu
else:
pred = model.module.inference(g, nfeat, device, args.batch_size, args.num_workers)
model.train()
return compute_acc(pred, labels, train_nids, val_nids, test_nids)
def smc_evaluate(model, g, nfeat, labels, train_nids, val_nids, test_nids, device):
"""
Evaluate the model on the validation set specified by ``val_mask``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
# single gpu
if isinstance(model, SAGE):
pred = model.inference(g, nfeat, device, args.batch_size, args.num_workers)
# multi gpu
else:
pred = model.module.inference(g, nfeat, device, args.batch_size, args.num_workers)
return pred
#### Entry point
def run(proc_id, n_gpus, args, devices, data):
# Unpack data
device = devices[proc_id]
if n_gpus > 1:
dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
master_ip='127.0.0.1', master_port='12345')
world_size = n_gpus
th.distributed.init_process_group(backend="nccl",
init_method=dist_init_method,
world_size=world_size,
rank=proc_id)
train_mask, val_mask, test_mask, n_classes, g = data
g = dgl.add_self_loop(g)
nfeat = g.ndata.pop('feat')
labels = g.ndata.pop('label')
if not args.data_cpu:
nfeat = nfeat.to(device)
labels = labels.to(device)
in_feats = nfeat.shape[1]
train_nid = th.LongTensor(np.nonzero(train_mask)).squeeze()
val_nid = th.LongTensor(np.nonzero(val_mask)).squeeze()
test_nid = th.LongTensor(np.nonzero(test_mask)).squeeze()
# Create PyTorch DataLoader for constructing blocks
n_edges = g.num_edges()
train_seeds = th.arange(n_edges)
if args.sample_gpu:
assert n_gpus > 0, "Must have GPUs to enable GPU sampling"
train_seeds = train_seeds.to(device)
g = g.to(device)
# Create sampler
sampler = dgl.dataloading.MultiLayerNeighborSampler(
[int(fanout) for fanout in args.fan_out.split(',')])
dataloader = dgl.dataloading.EdgeDataLoader(
g, train_seeds, sampler, exclude='reverse_id',
# For each edge with ID e in Reddit dataset, the reverse edge is e ± |E|/2.
reverse_eids=th.cat([
th.arange(n_edges // 2, n_edges),
th.arange(0, n_edges // 2)]).to(train_seeds),
negative_sampler=NegativeSampler(g, args.num_negs, args.neg_share),
device=device,
use_ddp=n_gpus > 1,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
num_workers=args.num_workers)
# Define model and optimizer
#model = SAGE(in_feats, args.num_hidden, args.num_hidden, args.num_layers, F.relu, args.dropout)#
model = SAGE(in_feats, args.num_hidden,args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout, args.aggregator_type)
#print(model)
model = model.to(device)
if n_gpus > 1:
model = DistributedDataParallel(model, device_ids=[device], output_device=device)
loss_fcn = CrossEntropyLoss()
# ssl_dgi = DeepGraphInfomax(args.num_hidden, device)
params_list = list(model.parameters())
# if ssl_dgi is not None:
# params_list += list(ssl_dgi.linear.parameters())+ list(ssl_dgi.linear_2.parameters())
optimizer = torch.optim.Adam(params_list, lr=args.lr, weight_decay=5e-4)
# Training loop
avg = 0
iter_pos = []
iter_neg = []
iter_d = []
iter_t = []
best_eval_acc = 0
best_test_acc = 0
for epoch in range(args.num_epochs):
if n_gpus > 1:
dataloader.set_epoch(epoch)
tic = time.time()
# Loop over the dataloader to sample the computation dependency graph as a list of
# blocks.
tic_step = time.time()
for step, (input_nodes, pos_graph, neg_graph, blocks) in enumerate(dataloader):
batch_inputs = nfeat[input_nodes].to(device)
pos_graph = pos_graph.to(device)
neg_graph = neg_graph.to(device)
blocks = [block.int().to(device) for block in blocks]
d_step = time.time()
# Compute loss and prediction
batch_pred = model(blocks, batch_inputs)
# ssl_dgi_loss = ssl_dgi.make_loss(model, model.embedding_x, batch_inputs, blocks)
loss = loss_fcn(batch_pred, pos_graph, neg_graph)
# loss=ssl_dgi_loss
# print(model.get_pre().shape, labels[input_nodes].shape)
loss=loss+F.cross_entropy(model.get_pre(), labels[blocks[-1].dstdata[dgl.NID]].to(device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
t = time.time()
pos_edges = pos_graph.num_edges()
neg_edges = neg_graph.num_edges()
iter_pos.append(pos_edges / (t - tic_step))
iter_neg.append(neg_edges / (t - tic_step))
iter_d.append(d_step - tic_step)
iter_t.append(t - d_step)
if step % args.log_every == 0:
gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
print('[{}]Epoch {:05d} | Step {:05d} | Loss {:.4f} | Speed (samples/sec) {:.4f}|{:.4f} | Load {:.4f}| train {:.4f} | GPU {:.1f} MB'.format(
proc_id, epoch, step, loss.item(), np.mean(iter_pos[3:]), np.mean(iter_neg[3:]), np.mean(iter_d[3:]), np.mean(iter_t[3:]), gpu_mem_alloc))
tic_step = time.time()
if step % args.eval_every == 0 and proc_id == 0:
eval_acc, test_acc = evaluate(model, g, nfeat, labels, train_nid, val_nid, test_nid, device)
print('Eval Acc {:.4f} Test Acc {:.4f}'.format(eval_acc, test_acc))
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_test_acc = test_acc
print('Best Eval Acc {:.4f} Test Acc {:.4f}'.format(best_eval_acc, best_test_acc))
toc = time.time()
if proc_id == 0:
print('Epoch Time(s): {:.4f}'.format(toc - tic))
if epoch >= 5:
avg += toc - tic
if n_gpus > 1:
th.distributed.barrier()
print(model)
th.save(model.state_dict(), './data_smc/'+args.dataset+'_infomax_model_'+args.file_id+'.pt')
m_state_dict = torch.load('./data_smc/'+args.dataset+'_infomax_model_'+args.file_id+'.pt')####
model.load_state_dict(m_state_dict)
#print("aaa")
pre=smc_evaluate(model, g, nfeat, labels, train_nid, val_nid, test_nid, device)
res=pre.detach().clone().cpu().data.numpy()
res=pd.DataFrame(res)
res.to_csv('./data_smc/'+args.dataset+'_feat_'+args.file_id+'.csv',header=None,index=None)
print(compute_acc(pre.detach().clone(),labels, train_nid, val_nid, test_nid))
if proc_id == 0:
print('Avg epoch time: {}'.format(avg / (epoch - 4)))
return model
def seed_torch(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def main(args, devices):
seed_torch(args.seed)
g,features,labels,train_mask,val_mask,test_mask,in_feats,n_classes,n_edges=utils.my_load_data(args)
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves memory and CPU.
g.create_formats_()
# Pack data
data = train_mask, val_mask, test_mask, n_classes, g
n_gpus = len(devices)
if devices[0] == -1:
run(0, 0, args, ['cpu'], data)
elif n_gpus == 1:
run(0, n_gpus, args, devices, data)
else:
procs = []
for proc_id in range(n_gpus):
p = mp.Process(target=run, args=(proc_id, n_gpus, args, devices, data))
p.start()
procs.append(p)
for p in procs:
p.join()
if __name__ == '__main__':
a=get_args.get_my_args()
argparser = argparse.ArgumentParser("multi-gpu training")
argparser.add_argument("--gpu", type=str, default='1',
help="GPU, can be a list of gpus for multi-gpu training,"
" e.g., 0,1,2,3; -1 for CPU")
argparser.add_argument('--dataset', type=str, default='cora')
argparser.add_argument('--num-epochs', type=int, default=20)
argparser.add_argument('--num-hidden', type=int, default=a.n_hidden)
argparser.add_argument('--num-layers', type=int, default=a.n_layers)
argparser.add_argument('--num-negs', type=int, default=1)
argparser.add_argument("--seed", type=int, default=200,help="random seed")
argparser.add_argument("--aggregator-type", type=str, default='gcn',help="Aggregator type: mean/gcn/pool/lstm")
argparser.add_argument('--neg-share', default=False, action='store_true',
help="sharing neg nodes for positive nodes")
argparser.add_argument("--file-id", type=str, default='128',
help="file id means feature shape")
argparser.add_argument('--fan-out', type=str, default='10,25')
argparser.add_argument('--batch-size', type=int, default=4096)
argparser.add_argument('--log-every', type=int, default=20)
argparser.add_argument('--eval-every', type=int, default=10000)
argparser.add_argument('--lr', type=float, default=2e-4)
argparser.add_argument('--dropout', type=float, default=0.5)
argparser.add_argument('--half', type=bool, default=False)
argparser.add_argument('--mask_rate', type=float, default=0)
argparser.add_argument('--num-workers', type=int, default=0,
help="Number of sampling processes. Use 0 for no extra process.")
argparser.add_argument('--sample-gpu', action='store_true',
help="Perform the sampling process on the GPU. Must have 0 workers.")
argparser.add_argument('--data-cpu', action='store_true',
help="By default the script puts all node features and labels "
"on GPU when using it to save time for data copy. This may "
"be undesired if they cannot fit in GPU memory at once. "
"This flag disables that.")
args = argparser.parse_args()
devices = list(map(int, args.gpu.split(',')))
print(devices,type(devices))
main(args, devices)