diff --git a/3 - PixelCNNs Blind spot and Gated PixelCNNs/PixelCNN_Blind_spot.ipynb b/3 - PixelCNNs Blind spot and Gated PixelCNNs/PixelCNN_Blind_spot.ipynb index d582176..fe0b1df 100644 --- a/3 - PixelCNNs Blind spot and Gated PixelCNNs/PixelCNN_Blind_spot.ipynb +++ b/3 - PixelCNNs Blind spot and Gated PixelCNNs/PixelCNN_Blind_spot.ipynb @@ -2,19 +2,29 @@ "nbformat": 4, "nbformat_minor": 0, "metadata": { + "accelerator": "GPU", "colab": { - "name": "PixelCNN - Blind_spot", + "name": "PixelCNN_Blind_spot.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { - "name": "python3", - "display_name": "Python 3" + "display_name": "pixel-cnn", + "language": "python", + "name": "pixel-cnn" }, "language_info": { - "name": "python" - }, - "accelerator": "GPU" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } }, "cells": [ { @@ -67,6 +77,7 @@ }, "source": [ "import random as rn\n", + "import time\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", @@ -78,11 +89,34 @@ "from tensorflow.keras import initializers\n", "from tensorflow.keras.utils import Progbar\n", "\n", - "tf.keras.backend.set_floatx('float64')" + "tf.keras.backend.set_floatx('float32')" ], "execution_count": null, "outputs": [] }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bbikfnF5d6rO", + "outputId": "bc7e894f-1000-46fb-8090-76ca6731f105" + }, + "source": [ + "print(\"Num GPUs Available: \", len(tf.config.list_physical_devices('GPU')))" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Num GPUs Available: 1\n" + ] + } + ] + }, { "cell_type": "markdown", "metadata": { @@ -152,7 +186,7 @@ "source": [ "As we saw above, the original PixelCNN had a problem with its masked convolution that lead to a blind spot. Given a specific pixel, the use of masked convolution was not able to capture the information of all previous pixels. As we can see on the image below, the information on *j* is never used to predict *m*; and the information on *j, n, o* are not used to predict *q*. \n", "\n", - "![masks.png]()" + "![masks.png]()" ] }, { @@ -231,11 +265,11 @@ "\n", " center = self.kernel_size // 2\n", "\n", - " mask = np.ones(self.kernel.shape, dtype=np.float64)\n", + " mask = np.ones(self.kernel.shape, dtype=np.float32)\n", " mask[center, center + (self.mask_type == 'B'):, :, :] = 0.\n", " mask[center + 1:, :, :, :] = 0.\n", "\n", - " self.mask = tf.constant(mask, dtype=tf.float64, name='mask')\n", + " self.mask = tf.constant(mask, dtype=tf.float32, name='mask')\n", "\n", " def call(self, input):\n", " masked_kernel = tf.math.multiply(self.mask, self.kernel)\n", @@ -267,7 +301,7 @@ " gradients = tape.gradient(loss, data)\n", "\n", " gradients = np.abs(gradients.numpy().squeeze())\n", - " gradients = (gradients > 0).astype('float64')\n", + " gradients = (gradients > 0).astype('float32')\n", " gradients[5, 5] = 0.5\n", "\n", " fig = plt.figure()\n", @@ -303,7 +337,12 @@ { "cell_type": "code", "metadata": { - "id": "APMjCAwveKo6" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "APMjCAwveKo6", + "outputId": "64cb00b6-86d5-46e7-b330-90d22d1e4f75" }, "source": [ "# 1 layer PixelCNN\n", @@ -314,12 +353,30 @@ "plot_receptive_field(model, data)\n" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOHUlEQVR4nO3db8yddX3H8fdn/WNpQUAQgpQNFhkZIREYYSjKNhADipgsywYJJprN7oE68M+MzgfGB1u2zBh9sJg0gDORP8EKiRpEmKLEZKuWUmah4KAgtCLFqPybo4DfPTinS2GlvXrOdfW+r1/er+ROz33fp59807ufc65z3ed8T6oKSe34rYUeQFK/LLXUGEstNcZSS42x1FJjlg4RujyvqhWs6jXzsGMO4VePPd1rprnDZZo7XCbA//AsO+u57Ol7g5R6Bav4w5zXa+aff+RCbvjbb/aaae5wmeYOlwmwvr79it/z8FtqjKWWGmOppcZYaqkxllpqjKWWGtOp1EkuSHJ/kgeSfHzooSTNbp+lTrIE+BfgQuBk4NIkJw89mKTZdLmnPhN4oKq2VtVO4HrgXcOOJWlWXUp9LPDobp9vm37tJZKsSbIhyYbnea6v+STtp95OlFXV2qo6o6rOWMar+oqVtJ+6lHo7cNxun6+efk3SItSl1D8ETkxyQpLlwCXA14YdS9Ks9vkqrap6IckHgG8BS4Crq+qewSeTNJNOL72sqpuBmweeRVIPfEaZ1BhLLTXGUkuNsdRSYyy11Jj0+V5aSd4JvPPIw1/7vn/45D/2lgtw+OpD+eW2J3vNNHe4THOHywT4yEc/ylP1iz1uE+211Lu8Oq+p3reJ/vNAGyTNHdWsY8sdatb19e1XLLWH31JjLLXUGEstNcZSS42x1FJjLLXUmC6LB69OsiPJ5gMxkKT5dLmn/lfggoHnkNSTfZa6qu4AfnEAZpHUg97enzrJGmANwApW9hUraT+5TVRqjGe/pcZYaqkxXX6ldR3w78BJSbYl+cvhx5I0qy4rgi89EINI6oeH31JjLLXUGEstNcZSS42x1FJj3CZq7qhmHVuu20T3YkwbJMeWO6ZZx5brNlFJc7PUUmMstdQYSy01xlJLjbHUUmO6vPTyuCS3J7k3yT1JLj8Qg0maTZcdZS8AH6mqjUkOAe5McltV3TvwbJJm0GWb6GNVtXF6+WlgC3Ds0INJms1+bRNNcjxwGrB+D99zm6i0CHQ+UZbkYOCrwBVV9dTLv+82UWlx6FTqJMuYFPqaqrpx2JEkzaPL2e8AVwFbquqzw48kaR5d7qnPBt4NnJtk0/Tj7QPPJWlGXbaJfh/Y40u8JC0+PqNMaoyllhpjqaXGWGqpMZZaaozbRM0d1axjy3Wb6F6MaYPk2HLHNOvYct0mKmlullpqjKWWGmOppcZYaqkxXV56uSLJD5LcPV08+OkDMZik2XRZZ/QccG5VPTNdlvD9JN+sqv8YeDZJM+jy0ssCnpl+umz60f8vtyX1ous6oyVJNgE7gNuqao+LB5NsSLLheZ7re05JHXUqdVW9WFWnAquBM5OcsofruHhQWgT26+x3Vf0KuB24YJhxJM2ry9nv1yY5bHr5IOB84L6hB5M0my5nv48BvpRkCZMbgRuq6hvDjiVpVl3Ofv8nk3flkDQCPqNMaoyllhpjqaXGWGqpMZZaaoyLB0eWe8zvHcLBBz3ea+Yzvz6698yhcx/78dO957p4cC9cPDhc7idv/SPOOeXzvWbesfny3jOHzv37t32v91wXD0palCy11BhLLTXGUkuNsdRSYyy11JjOpZ6uNLoriS+7lBax/bmnvhzYMtQgkvrRdfHgauAdwJXDjiNpXl3vqT8HfAz4zStdwW2i0uLQZUfZRcCOqrpzb9dzm6i0OHS5pz4buDjJw8D1wLlJvjzoVJJmts9SV9Unqmp1VR0PXAJ8p6ouG3wySTPx99RSY7qsCP4/VfVd4LuDTCKpF95TS42x1FJjLLXUGEstNcZSS41xm+jIcofaJvrQr1/xGcAzO3rZcp7c+svec8f0M3Ob6F6Mbevn2LaJvvee/p+v/+FjVvO1S9b1njumn5nbRCXNzVJLjbHUUmMstdQYSy01xlJLjen0Kq3pgoSngReBF6rqjCGHkjS7/Xnp5Z9U1c8Hm0RSLzz8lhrTtdQF3JrkziRr9nQFt4lKi0PXw+83V9X2JEcBtyW5r6ru2P0KVbUWWAuTp4n2PKekjjrdU1fV9umfO4CbgDOHHErS7Lrs/V6V5JBdl4G3AZuHHkzSbLocfh8N3JRk1/WvrapbBp1K0sz2Weqq2gq84QDMIqkH/kpLaoyllhpjqaXGWGqpMZZaaozbRM0d1axjy3Wb6F6MaYPk2HLHNOvYct0mKmlullpqjKWWGmOppcZYaqkxllpqTKdSJzksybok9yXZkuSNQw8maTZd1xl9Hrilqv4syXJg5YAzSZrDPkud5FDgHOA9AFW1E9g57FiSZtXl8PsE4Angi0nuSnLldK3RS7hNVFocupR6KXA68IWqOg14Fvj4y69UVWur6oyqOmMZr+p5TElddSn1NmBbVa2ffr6OScklLUL7LHVV/Qx4NMlJ0y+dB9w76FSSZtb17PcHgWumZ763Au8dbiRJ8+hU6qraBPhOl9II+IwyqTGWWmqMpZYaY6mlxlhqqTFuEzV3VLOOLddtonsxpg2SY8sd06xjy3WbqKS5WWqpMZZaaoyllhpjqaXG7LPUSU5Ksmm3j6eSXHEghpO0//b5Kq2quh84FSDJEmA7cNPAc0ma0f4efp8HPFhVPxliGEnz67okYZdLgOv29I0ka4A1ACvcICwtmM731NOtJxcDX9nT9108KC0O+3P4fSGwsaoeH2oYSfPbn1JfyiscektaPLq+l9Yq4HzgxmHHkTSvrosHnwWOGHgWST3wGWVSYyy11BhLLTXGUkuNsdRSY1w8aO6oZh1brosH92JMy+bGljumWceW6+JBSXOz1FJjLLXUGEstNcZSS42x1FJjur708kNJ7kmyOcl1SVYMPZik2XRZEXws8DfAGVV1CrCEya4ySYtQ18PvpcBBSZYCK4GfDjeSpHnss9RVtR34DPAI8BjwZFXd+vLrJVmTZEOSDc/zXP+TSuqky+H34cC7gBOA1wGrklz28uu5TVRaHLocfr8VeKiqnqiq55nsKXvTsGNJmlWXUj8CnJVkZZIweZeOLcOOJWlWXR5TrwfWARuBH03/ztqB55I0o67bRD8FfGrgWST1wGeUSY2x1FJjLLXUGEstNcZSS41xm6i5o5p1bLluE92LMW2QHFvumGYdW67bRCXNzVJLjbHUUmMstdQYSy01xlJLjem6TfTy6SbRe5JcMfRQkmbXZZ3RKcD7gDOBNwAXJXn90INJmk2Xe+rfB9ZX1X9X1QvA94A/HXYsSbPqUurNwFuSHJFkJfB24LiXX8ltotLisM/NJ1W1Jck/AbcCzwKbgBf3cL21TNccvTqv6f+5p5I66XSirKquqqo/qKpzgF8CPx52LEmz6rSjLMlRVbUjyW8zeTx91rBjSZpVp1IDX01yBPA88P6q+tWAM0maQ9dtom8ZehBJ/fAZZVJjLLXUGEstNcZSS42x1FJjBtkmCvwF8F8d/sqRwM87xh8KdF3LaO64Zh1b7mKY9cSqOnSP36mqBfsANuzHddea2z13TLOOLXexzzqmw++vmztY7phmHVvuAZ91NKWuqkH+ccwd16xjy12IWRe61EO9eb2545p1bLmLetZB3qFD0sJZ6HtqST2z1FJjFqzUSS5Icn+SB5J8vKfMq5PsSLK5j7xp5nFJbk9y73Sb6uU95a5I8oMkd09zP91H7m75S5LcleQbPWY+nORHSTYl2dBT5mFJ1iW5L8mWJG/sIfOk6Yy7Pp7qawtukg9Nf16bk1yXZEVPuf1t7O36e7E+P4AlwIPA7wLLgbuBk3vIPQc4Hdjc46zHAKdPLx/CZOtLH7MGOHh6eRmwHjirx7k/DFwLfKPHzIeBI3v+v/Al4K+ml5cDhw3wf+1nwO/0kHUs8BBw0PTzG4D39JB7CpNdgCuZvBz634DXz5q3UPfUZwIPVNXWqtoJXA+8a97QqroD+MW8OS/LfKyqNk4vPw1sYfLDnTe3quqZ6afLph+9nLVMshp4B3BlH3lDSXIokxviqwCqamf1v4DjPODBqvpJT3lLgYOSLGVSwp/2kNnrxt6FKvWxwKO7fb6NHooytCTHA6cxuVftI29Jkk3ADuC2quolF/gc8DHgNz3l7VLArUnuTLKmh7wTgCeAL04fKlyZZFUPubu7BLiuj6Cq2g58BngEeAx4sqpu7SG608berjxR1lGSg4GvAldU1VN9ZFbVi1V1KrAaOHP6xglzSXIRsKOq7px7wP/vzVV1OnAh8P4k58yZt5TJw6UvVNVpTLbV9nJ+BSDJcuBi4Cs95R3O5IjyBOB1wKokl82bW1VbgF0be2/hFTb2drVQpd7OS2+JVk+/tiglWcak0NdU1Y19508POW8HLugh7mzg4iQPM3lYc26SL/eQu+ueiqraAdzE5GHUPLYB23Y7QlnHpOR9uRDYWFWP95T3VuChqnqiqp4HbgTe1Edw9bixd6FK/UPgxCQnTG9NLwG+tkCz7FWSMHnMt6WqPttj7muTHDa9fBBwPnDfvLlV9YmqWl1VxzP5d/1OVc19b5JkVZJDdl0G3sbksHGeWX8GPJrkpOmXzgPunWvQl7qUng69px4Bzkqycvr/4jwm51jmluSo6Z+7NvZeO2tW122ivaqqF5J8APgWk7OTV1fVPfPmJrkO+GPgyCTbgE9V1VVzxp4NvBv40fTxL8DfVdXNc+YeA3wpyRImN643VFVvv34awNHATZP/yywFrq2qW3rI/SBwzfTGfSvw3h4yd93wnA/8dR95AFW1Psk6YCPwAnAX/T1ltLeNvT5NVGqMJ8qkxlhqqTGWWmqMpZYaY6mlxlhqqTGWWmrM/wJ0im1A4OfnGwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "code", "metadata": { - "id": "aUHo0N7-6IYa" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "aUHo0N7-6IYa", + "outputId": "f1919267-8f98-4821-e0ce-f34aed6684d2" }, "source": [ "# 2 layer PixelCNN\n", @@ -332,12 +389,30 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOVElEQVR4nO3df6zV9X3H8edrF5AfUrD+IJTrJksdmSHxxwiztaWbVAOt1WRZNkxsUrOV/dF22No1uv5h+seWLWua9o+lCRE7kyLGoiTOWMW1tqTJRguIE7jYKVq9iF6dPwDr+GHf++N87wLswv3ccz4f7vl+8nokN5x77+GVd+C87vme7z3nfRQRmFk9fmuyBzCzvFxqs8q41GaVcanNKuNSm1VmSonQaTonpjMra+bc+bN5+8ChrJnOLZfp3HKZAP/DuxyNIxrre0VKPZ1Z/KGWZ838s9tX8sDf/DBrpnPLZTq3XCbA1vjRab/nw2+zyrjUZpVxqc0q41KbVcalNquMS21WmaRSS1oh6VlJz0m6o/RQZta9cUstaQD4Z2AlcBlws6TLSg9mZt1JuadeCjwXEfsi4ihwP3BT2bHMrFsppV4AvHzC58PN104iabWkbZK2HeNIrvnMbIKynSiLiLURsSQilkzlnFyxZjZBKaXeD1x8wueDzdfMrA+llPoXwKWSFkqaBqwCHi47lpl1a9xXaUXEcUlfBB4HBoB7ImJ38cnMrCtJL72MiEeBRwvPYmYZ+BllZpVxqc0q41KbVcalNquMS21WGeV8Ly1JnwE+c8F5F37+77/+D9lyAc4bnMNbw+9kzXRuuUznlssEuP2rX+VgvDnmNtGspR71AX0wsm8T/adCGySd26pZ25Zbatat8aPTltqH32aVcanNKuNSm1XGpTarjEttVhmX2qwyKYsH75E0ImnX2RjIzHqTck/9L8CKwnOYWSbjljoitgBvnoVZzCyDbO9PLWk1sBpgOjNzxZrZBHmbqFllfPbbrDIutVllUn6ltQH4d2CRpGFJf1F+LDPrVsqK4JvPxiBmlocPv80q41KbVcalNquMS21WGZfarDLeJurcVs3atlxvEz2DNm2QbFtum2ZtW663iZpZz1xqs8q41GaVcanNKuNSm1XGpTarTMpLLy+W9KSkPZJ2S1pzNgYzs+6k7Cg7DtweETskzQa2S3oiIvYUns3MupCyTfRAROxoLh8ChoAFpQczs+5MaJuopEuAK4GtY3zP20TN+kDyiTJJ5wIPArdFxMFTv+9tomb9IanUkqbSKfT6iHio7Ehm1ouUs98C1gFDEfGt8iOZWS9S7qmvAT4LXCtpZ/PxqcJzmVmXUraJ/gwY8yVeZtZ//Iwys8q41GaVcanNKuNSm1Um2/tT28kuvfzXPP7Kzuy5W3Z9Intuicw25q5bvzJ75mTwNtFCufN/bzbnzngte+7h9+Zlzy2R2cbcN/57vreJno63icLXN3+CZYu/kz13y6412XNLZLYxd936O71N1Mz6j0ttVhmX2qwyLrVZZVxqs8qkvPRyuqSfS3q6WTz4jbMxmJl1J+XJJ0eAayPicLMs4WeSfhgR/1F4NjPrQspLLwM43Hw6tfnI/8ttM8sidZ3RgKSdwAjwRESMuXhQ0jZJ245xJPecZpYoqdQR8X5EXAEMAkslLR7jOl48aNYHJnT2OyLeBp4EVpQZx8x6lXL2+0JJc5vLM4DrgL2lBzOz7qSc/Z4P3CtpgM4PgQci4pGyY5lZt1LOfv8nnXflMLMW8DPKzCrjUptVxqU2q4xLbVYZl9qsMl486MWDrVsQePi9eRz45aHsuSVuC148eAZePNjhxYOd3L+7/qfZc0vcFrx40Mx65lKbVcalNquMS21WGZfarDIutVllkkvdrDR6SpJfdmnWxyZyT70GGCo1iJnlkbp4cBD4NHB32XHMrFep99TfBr4G/OZ0V/A2UbP+kLKj7AZgJCK2n+l63iZq1h9S7qmvAW6U9CJwP3CtpO8XncrMujZuqSPizogYjIhLgFXAjyPiluKTmVlX/Htqs8qkrAj+PxHxE+AnRSYxsyx8T21WGZfarDIutVllXGqzyrjUZpXxNlFvE+Xwe/N44b3TPgO4a/OmTuOdfW9lz23TbcHbRM/A20Q7Sm0TvXV3/ufrf2X+IA+v2pg9t023BW8TNbOeudRmlXGpzSrjUptVxqU2q4xLbVaZpFdpNQsSDgHvA8cjYknJocysexN56eUfR8QbxSYxsyx8+G1WmdRSB7BZ0nZJq8e6greJmvWH1MPvj0XEfkkXAU9I2hsRW068QkSsBdZC52mimec0s0RJ99QRsb/5cwTYBCwtOZSZdS9l7/csSbNHLwPXA7tKD2Zm3Uk5/J4HbJI0ev37IuKxolOZWdfGLXVE7AMuPwuzmFkG/pWWWWVcarPKuNRmlXGpzSrjUptVxttEnduqWduW622iZ9CmDZJty23TrG3L9TZRM+uZS21WGZfarDIutVllXGqzyrjUZpVJKrWkuZI2StoraUjSR0oPZmbdSV1n9B3gsYj4U0nTgJkFZzKzHoxbaklzgGXA5wAi4ihwtOxYZtatlMPvhcDrwPckPSXp7mat0Um8TdSsP6SUegpwFfDdiLgSeBe449QrRcTaiFgSEUumck7mMc0sVUqph4HhiNjafL6RTsnNrA+NW+qIeBV4WdKi5kvLgT1FpzKzrqWe/f4SsL45870PuLXcSGbWi6RSR8ROwO90adYCfkaZWWVcarPKuNRmlXGpzSrjUptVxttEnduqWduW622iZ9CmDZJty23TrG3L9TZRM+uZS21WGZfarDIutVllXGqzyoxbakmLJO084eOgpNvOxnBmNnHjvkorIp4FrgCQNADsBzYVnsvMujTRw+/lwPMR8asSw5hZ71KXJIxaBWwY6xuSVgOrAaZ7g7DZpEm+p262ntwI/GCs73vxoFl/mMjh90pgR0S8VmoYM+vdREp9M6c59Daz/pH6XlqzgOuAh8qOY2a9Sl08+C5wfuFZzCwDP6PMrDIutVllXGqzyrjUZpVxqc0q48WDzm3VrG3L9eLBM2jTsrm25bZp1rblevGgmfXMpTarjEttVhmX2qwyLrVZZVxqs8qkvvTyy5J2S9olaYOk6aUHM7PupKwIXgD8NbAkIhYDA3R2lZlZH0o9/J4CzJA0BZgJvFJuJDPrxbiljoj9wDeBl4ADwDsRsfnU60laLWmbpG3HOJJ/UjNLknL4fR5wE7AQ+BAwS9Itp17P20TN+kPK4fcngRci4vWIOEZnT9lHy45lZt1KKfVLwNWSZkoSnXfpGCo7lpl1K+Ux9VZgI7ADeKb5O2sLz2VmXUrdJnoXcFfhWcwsAz+jzKwyLrVZZVxqs8q41GaVcanNKuNtos5t1axty/U20TNo0wbJtuW2ada25XqbqJn1zKU2q4xLbVYZl9qsMi61WWVcarPKpG4TXdNsEt0t6bbSQ5lZ91LWGS0GPg8sBS4HbpD04dKDmVl3Uu6pfx/YGhG/jojjwE+BPyk7lpl1K6XUu4CPSzpf0kzgU8DFp17J20TN+sO4m08iYkjSPwKbgXeBncD7Y1xvLc2aow/og/mfe2pmSZJOlEXEuoj4g4hYBrwF/LLsWGbWraQdZZIuiogRSb9N5/H01WXHMrNuJZUaeFDS+cAx4AsR8XbBmcysB6nbRD9eehAzy8PPKDOrjEttVhmX2qwyLrVZZVxqs8oU2SYK/DnwXwl/5QLgjcT4OUDqWkbntmvWtuX2w6yXRsScMb8TEZP2AWybwHXXOjc9t02zti2332dt0+H3vzq3WG6bZm1b7lmftTWljogi/zjObdesbcudjFknu9Sl3rzeue2atW25fT1rkXfoMLPJM9n31GaWmUttVplJK7WkFZKelfScpDsyZd4jaUTSrhx5TebFkp6UtKfZpromU+50ST+X9HST+40cuSfkD0h6StIjGTNflPSMpJ2StmXKnCtpo6S9koYkfSRD5qJmxtGPg7m24Er6cvP/tUvSBknTM+Xm29ib+nuxnB/AAPA88LvANOBp4LIMucuAq4BdGWedD1zVXJ5NZ+tLjlkFnNtcngpsBa7OOPdXgPuARzJmvghckPm2cC/wl83lacDcAre1V4HfyZC1AHgBmNF8/gDwuQy5i+nsApxJ5+XQ/wZ8uNu8ybqnXgo8FxH7IuIocD9wU6+hEbEFeLPXnFMyD0TEjubyIWCIzn9ur7kREYebT6c2H1nOWkoaBD4N3J0jrxRJc+j8IF4HEBFHI/8CjuXA8xHxq0x5U4AZkqbQKeErGTKzbuydrFIvAF4+4fNhMhSlNEmXAFfSuVfNkTcgaScwAjwREVlygW8DXwN+kylvVACbJW2XtDpD3kLgdeB7zUOFuyXNypB7olXAhhxBEbEf+CbwEnAAeCciNmeITtrYm8onyhJJOhd4ELgtIg7myIyI9yPiCmAQWNq8cUJPJN0AjETE9p4H/P8+FhFXASuBL0ha1mPeFDoPl74bEVfS2Vab5fwKgKRpwI3ADzLlnUfniHIh8CFglqRbes2NiCFgdGPvY5xmY2+qySr1fk7+STTYfK0vSZpKp9DrI+Kh3PnNIeeTwIoMcdcAN0p6kc7DmmslfT9D7ug9FRExAmyi8zCqF8PA8AlHKBvplDyXlcCOiHgtU94ngRci4vWIOAY8BHw0R3Bk3Ng7WaX+BXCppIXNT9NVwMOTNMsZSRKdx3xDEfGtjLkXSprbXJ4BXAfs7TU3Iu6MiMGIuITOv+uPI6LnexNJsyTNHr0MXE/nsLGXWV8FXpa0qPnScmBPT4Oe7GYyHXo3XgKuljSzuV0sp3OOpWeSLmr+HN3Ye1+3WanbRLOKiOOSvgg8Tufs5D0RsbvXXEkbgD8CLpA0DNwVEet6jL0G+CzwTPP4F+BvI+LRHnPnA/dKGqDzw/WBiMj266cC5gGbOrdlpgD3RcRjGXK/BKxvfrjvA27NkDn6g+c64K9y5AFExFZJG4EdwHHgKfI9ZTTbxl4/TdSsMj5RZlYZl9qsMi61WWVcarPKuNRmlXGpzSrjUptV5n8BFgeDlsYBZaUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "code", "metadata": { - "id": "RFMjAntD6Kot" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "RFMjAntD6Kot", + "outputId": "3248d446-1d4e-4180-8390-bb83a426a31a" }, "source": [ "# 3 layer PixelCNN\n", @@ -351,12 +426,30 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOaElEQVR4nO3df6zV9X3H8edrF5AfUrCihHLdZKkhMyRVR5itLdmkEmitJsvSYWaTmq7sj7bD1q7R7Q/TP9yPtGnaP5YmROxMihiLkjhjLa61kiYbLSDOCxetolUois4fgHP8sO/9cb53QXbhfu45nw/3fD99PZIbzr338Mo7cF73fM/3nvM+igjMrB6/M9EDmFleLrVZZVxqs8q41GaVcanNKjOpROgUnRNTmZE1c/a8mbx54HDWTOeWy3RuuUyA/+FtjsVRjfa9IqWeygz+SMuyZn76lpXc9zc/zJrp3HKZzi2XCbA1fnza7/nw26wyLrVZZVxqs8q41GaVcanNKuNSm1UmqdSSVkh6WtKzkm4tPZSZdW/MUksaAP4ZWAlcCtwg6dLSg5lZd1LuqZcAz0bE3og4BtwLXF92LDPrVkqp5wMvnfT5vuZr7yFptaRtkrYd52iu+cxsnLKdKIuItRGxOCIWT+acXLFmNk4ppd4PXHTS54PN18ysD6WU+hfAJZIWSJoCrAIeLDuWmXVrzFdpRcQJSV8EfgQMAHdFxK7ik5lZV5JeehkRDwMPF57FzDLwM8rMKuNSm1XGpTarjEttVhmX2qwyyvleWpI+BXxqznkXfP7v/+4fs+UCnDc4izf2vZU107nlMp1bLhPglq9+lUPx+qjbRLOWesT79P7Ivk30G4U2SDq3VbO2LbfUrFvjx6cttQ+/zSrjUptVxqU2q4xLbVYZl9qsMi61WWVSFg/eJemgpKGzMZCZ9SblnvpfgBWF5zCzTMYsdURsAV4/C7OYWQbZ3p9a0mpgNcBUpueKNbNx8jZRs8r47LdZZVxqs8qk/EprA/DvwEJJ+yR9rvxYZtatlBXBN5yNQcwsDx9+m1XGpTarjEttVhmX2qwyLrVZZbxNdHAWc84/kD33yDtzOXfaK63IbdOsbcs98s5cDjxzOGsmeJvomLmf+4t/yJ67ZWgNSxd9pxW5bZq1bblbhtZwx/LHs2aCt4ma/VZxqc0q41KbVcalNquMS21WGZfarDIpL728SNJjknZL2iVpzdkYzMy6k7Kj7ARwS0TskDQT2C7p0YjYXXg2M+tCyjbRAxGxo7l8GBgG5pcezMy6M65topIuBi4Hto7yPW8TNesDySfKJJ0L3A/cHBGHTv2+t4ma9YekUkuaTKfQ6yPigbIjmVkvUs5+C1gHDEfEt8qPZGa9SLmnvgr4DHC1pJ3NxycKz2VmXUrZJvozYNSXeJlZ//Ezyswq41KbVcalNquMS21WmWzvT23Wdr98cjp3LL8sa+anv3H2n13pbaLeJtqqWUvmvvZf87Lfxkrdbr1NdIxcbxNtz6wlc9etvy37bazU7dbbRM1+i7jUZpVxqc0q41KbVcalNqtMyksvp0r6uaQnm8WDXz8bg5lZd1KefHIUuDoijjTLEn4m6YcR8R+FZzOzLqS89DKAI82nk5uP/L/cNrMsUtcZDUjaCRwEHo2IURcPStomadtxjuae08wSJZU6It6NiMuAQWCJpEWjXMeLB836wLjOfkfEm8BjwIoy45hZr1LOfl8gaXZzeRpwDbCn9GBm1p2Us9/zgLslDdD5IXBfRDxUdiwz61bK2e//pPOuHGbWAn5GmVllXGqzyrjUZpVxqc0q41KbVcaLB714sFWzjuQeeOZw9twStzEvHjwDLx4sl9umWUdy71j+ePbcErcxLx40s5651GaVcanNKuNSm1XGpTarjEttVpnkUjcrjZ6Q5JddmvWx8dxTrwGGSw1iZnmkLh4cBD4J3Fl2HDPrVeo99beBrwG/Od0VvE3UrD+k7Ci7FjgYEdvPdD1vEzXrDyn31FcB10l6AbgXuFrS94tOZWZdG7PUEXFbRAxGxMXAKuAnEXFj8cnMrCv+PbVZZVJWBP+fiPgp8NMik5hZFr6nNquMS21WGZfarDIutVllXGqzynibqLeJcuSduTz/zmmfAdy1uZOn8NbeN7LnlrwteJvoaXibaLs2dG4ZWsNNu/I/X/8r8wZ5cNXG7LklbwveJmpmfcelNquMS21WGZfarDIutVllXGqzyiS9SqtZkHAYeBc4ERGLSw5lZt0bz0sv/yQiXis2iZll4cNvs8qkljqAzZK2S1o92hW8TdSsP6Qefn80IvZLuhB4VNKeiNhy8hUiYi2wFjpPE808p5klSrqnjoj9zZ8HgU3AkpJDmVn3UvZ+z5A0c+QysBwYKj2YmXUn5fB7LrBJ0sj174mIR4pOZWZdG7PUEbEX+NBZmMXMMvCvtMwq41KbVcalNquMS21WGZfarDLeJurcVs3atlxvEz2DNm2QbFtum2ZtW663iZpZz1xqs8q41GaVcanNKuNSm1XGpTarTFKpJc2WtFHSHknDkj5cejAz607qOqPvAI9ExJ9JmgJMLziTmfVgzFJLmgUsBT4LEBHHgGNlxzKzbqUcfi8AXgW+J+kJSXc2a43ew9tEzfpDSqknAVcA342Iy4G3gVtPvVJErI2IxRGxeDLnZB7TzFKllHofsC8itjafb6RTcjPrQ2OWOiJeBl6StLD50jJgd9GpzKxrqWe/vwSsb8587wVuKjeSmfUiqdQRsRPwO12atYCfUWZWGZfarDIutVllXGqzyrjUZpXxNlHntmrWtuV6m+gZtGmDZNty2zRr23K9TdTMeuZSm1XGpTarjEttVhmX2qwyY5Za0kJJO0/6OCTp5rMxnJmN35iv0oqIp4HLACQNAPuBTYXnMrMujffwexnwXET8qsQwZta71CUJI1YBG0b7hqTVwGqAqd4gbDZhku+pm60n1wE/GO37Xjxo1h/Gc/i9EtgREa+UGsbMejeeUt/AaQ69zax/pL6X1gzgGuCBsuOYWa9SFw++DZxfeBYzy8DPKDOrjEttVhmX2qwyLrVZZVxqs8p48aBzWzVr23K9ePAM2rRsrm25bZq1bblePGhmPXOpzSrjUptVxqU2q4xLbVYZl9qsMqkvvfyypF2ShiRtkDS19GBm1p2UFcHzgb8GFkfEImCAzq4yM+tDqYffk4BpkiYB04FflxvJzHoxZqkjYj/wTeBF4ADwVkRsPvV6klZL2iZp23GO5p/UzJKkHH6fB1wPLAA+AMyQdOOp1/M2UbP+kHL4/XHg+Yh4NSKO09lT9pGyY5lZt1JK/SJwpaTpkkTnXTqGy45lZt1KeUy9FdgI7ACeav7O2sJzmVmXUreJ3g7cXngWM8vAzygzq4xLbVYZl9qsMi61WWVcarPKeJuoc1s1a9tyvU30DNq0QbJtuW2atW253iZqZj1zqc0q41KbVcalNquMS21WGZfarDKp20TXNJtEd0m6ufRQZta9lHVGi4DPA0uADwHXSvpg6cHMrDsp99R/AGyNiP+OiBPA48Cflh3LzLqVUuoh4GOSzpc0HfgEcNGpV/I2UbP+MObmk4gYlvRPwGbgbWAn8O4o11tLs+bofXp//ueemlmSpBNlEbEuIv4wIpYCbwDPlB3LzLqVtKNM0oURcVDS79J5PH1l2bHMrFtJpQbul3Q+cBz4QkS8WXAmM+tB6jbRj5UexMzy8DPKzCrjUptVxqU2q4xLbVYZl9qsMkW2iQJ/Dvwy4a/MAV5LjJ8FpK5ldG67Zm1bbj/MeklEzBr1OxExYR/AtnFcd61z03PbNGvbcvt91jYdfv+rc4vltmnWtuWe9VlbU+qIKPKP49x2zdq23ImYdaJLXerN653brlnbltvXsxZ5hw4zmzgTfU9tZpm51GaVmbBSS1oh6WlJz0q6NVPmXZIOShrKkddkXiTpMUm7m22qazLlTpX0c0lPNrlfz5F7Uv6ApCckPZQx8wVJT0naKWlbpszZkjZK2iNpWNKHM2QubGYc+TiUawuupC83/19DkjZImpopN9/G3tTfi+X8AAaA54DfB6YATwKXZshdClwBDGWcdR5wRXN5Jp2tLzlmFXBuc3kysBW4MuPcXwHuAR7KmPkCMCfzbeFu4C+by1OA2QVuay8Dv5chaz7wPDCt+fw+4LMZchfR2QU4nc7Lof8N+GC3eRN1T70EeDYi9kbEMeBe4PpeQyNiC/B6rzmnZB6IiB3N5cPAMJ3/3F5zIyKONJ9Obj6ynLWUNAh8ErgzR14pkmbR+UG8DiAijkX+BRzLgOci4leZ8iYB0yRNolPCX2fIzLqxd6JKPR946aTP95GhKKVJuhi4nM69ao68AUk7gYPAoxGRJRf4NvA14DeZ8kYEsFnSdkmrM+QtAF4Fvtc8VLhT0owMuSdbBWzIERQR+4FvAi8CB4C3ImJzhuikjb2pfKIskaRzgfuBmyPiUI7MiHg3Ii4DBoElzRsn9ETStcDBiNje84D/30cj4gpgJfAFSUt7zJtE5+HSdyPicjrbarOcXwGQNAW4DvhBprzz6BxRLgA+AMyQdGOvuRExDIxs7H2E02zsTTVRpd7Pe38SDTZf60uSJtMp9PqIeCB3fnPI+RiwIkPcVcB1kl6g87Dmaknfz5A7ck9FRBwENtF5GNWLfcC+k45QNtIpeS4rgR0R8UqmvI8Dz0fEqxFxHHgA+EiO4Mi4sXeiSv0L4BJJC5qfpquABydoljOSJDqP+YYj4lsZcy+QNLu5PA24BtjTa25E3BYRgxFxMZ1/159ERM/3JpJmSJo5chlYTuewsZdZXwZekrSw+dIyYHdPg77XDWQ69G68CFwpaXpzu1hG5xxLzyRd2Pw5srH3nm6zUreJZhURJyR9EfgRnbOTd0XErl5zJW0A/hiYI2kfcHtErOsx9irgM8BTzeNfgL+NiId7zJ0H3C1pgM4P1/siItuvnwqYC2zq3JaZBNwTEY9kyP0SsL754b4XuClD5sgPnmuAv8qRBxARWyVtBHYAJ4AnyPeU0Wwbe/00UbPK+ESZWWVcarPKuNRmlXGpzSrjUptVxqU2q4xLbVaZ/wWVXHDe9eNHQgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "code", "metadata": { - "id": "zbsQRrol6O6W" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "zbsQRrol6O6W", + "outputId": "85ebce1c-ee36-484b-8696-22187c9dc7c2" }, "source": [ "# 4 layer PixelCNN\n", @@ -371,12 +464,30 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOj0lEQVR4nO3dbYzV5Z3G8e+1A8iDFKwooYy7sqkxa0yqLmFtbcmuVBZaq0nTuJi1SU237Iu2i6220d0Xpi/ch9g07YtNEyJ2TYoYipJYoxa3tZImu7SIsPKkVbQCRdH1AXAtD/a3L85/NsgOzD3n3Ddz/rfXJ5lwZuZw5ReY65z/+c85v6OIwMzq8QdjPYCZ5eVSm1XGpTarjEttVhmX2qwy40qETtAZMZEpWTOnz5rKm/sOZs10brlM55bLBPgdb3MkDmu47xUp9USm8GdakDXzupsXs/obj2TNdG65TOeWywTYED896fd8+G1WGZfarDIutVllXGqzyrjUZpVxqc0qk1RqSYskPSPpOUm3lh7KzLo3YqklDQD/CiwGLgKul3RR6cHMrDsp99TzgOciYldEHAHuA64tO5aZdSul1LOB3cd9vqf52ntIWippo6SNRzmcaz4zG6VsJ8oiYnlEzI2IueM5I1esmY1SSqn3Aucd9/lg8zUz60Mppf4VcIGkOZImAEuAB8uOZWbdGvFVWhFxTNJXgJ8AA8DdEbGt+GRm1pWkl15GxMPAw4VnMbMM/Iwys8q41GaVcanNKuNSm1XGpTarjHK+l5akzwCfmXHWOV/6x3/452y5AGcNTmPG2fuyZgIcemcmZ0565X2d26ZZ25ZbatZbbr6FjVt+N+w20aylHvIBfTCybxO9czFf/Ot/ypoJsH7rMuZf/L33dW6bZm1bbqlZ5/3l7pOW2offZpVxqc0q41KbVcalNquMS21WGZfarDIpiwfvlrRf0tbTMZCZ9SblnvrfgEWF5zCzTEYsdUSsB14/DbOYWQbZ3p9a0lJgKcBEJueKNbNR8jZRs8r47LdZZVxqs8qk/EprFfAfwIWS9kj6YvmxzKxbKSuCrz8dg5hZHj78NquMS21WGZfarDIutVllXGqzynibaIs2U5bKbdOsbcs99M5M9j17MGsmwM233MKBeN3bRIfTps2UpXLbNGvbctdvXcYdC5/ImgmwIX560lL78NusMi61WWVcarPKuNRmlXGpzSrjUptVJuWll+dJelzSdknbJC07HYOZWXdSdpQdA26OiE2SpgJPSnosIrYXns3MupCyTXRfRGxqLh8EdgCzSw9mZt0Z1TZRSecDlwIbhvmet4ma9YHkE2WSzgTuB26KiAMnft/bRM36Q1KpJY2nU+iVEfFA2ZHMrBcpZ78FrAB2RMR3yo9kZr1Iuae+Avg8cKWkzc3HpwrPZWZdStkm+gtg2Jd4mVn/8TPKzCrjUptVxqU2q4xLbVaZbO9PbdZ2v94ymTsWXpI187o7T/+zK71NtEWbKUvltmnWkrmv/fcs3tjzVtbMswanZc8EbxM9pTZtpiyV26ZZS+auWHkbq7/xSNbM6+5cnD0TvE3U7H3FpTarjEttVhmX2qwyLrVZZVJeejlR0i8lbWkWD37rdAxmZt1JefLJYeDKiDjULEv4haRHIuI/C89mZl1IeellAIeaT8c3H/l/uW1mWaSuMxqQtBnYDzwWEcMuHpS0UdLGoxzOPaeZJUoqdUS8GxGXAIPAPEkXD3MdLx406wOjOvsdEW8CjwOLyoxjZr1KOft9jqTpzeVJwFXAztKDmVl3Us5+zwLukTRA50ZgdUQ8VHYsM+tWytnv/6Lzrhxm1gJ+RplZZVxqs8q41GaVcanNKuNSm1XGiwdbthzPiwc7ufuePZg9t8SSQC8ePAUvHiyX26ZZh3LvWPhE9twSSwK9eNDMeuZSm1XGpTarjEttVhmX2qwyLrVZZZJL3aw0ekqSX3Zp1sdGc0+9DNhRahAzyyN18eAg8GngrrLjmFmvUu+pvwt8E/j9ya7gbaJm/SFlR9nVwP6IePJU1/M2UbP+kHJPfQVwjaQXgfuAKyX9sOhUZta1EUsdEbdFxGBEnA8sAX4WETcUn8zMuuLfU5tVJmVF8P+JiJ8DPy8yiZll4Xtqs8q41GaVcanNKuNSm1XGpTarjLeJtnCTZoltoi+8c9JnAHdt5vgJvLXrjey5pTZ0epvoKXibaLty129dxo3b8j9f/+uzBnlwyZrsuaU2dHqbqJn1JZfarDIutVllXGqzyrjUZpVxqc0qk/QqrWZBwkHgXeBYRMwtOZSZdW80L738i4h4rdgkZpaFD7/NKpNa6gDWSXpS0tLhruBtomb9IfXw++MRsVfSucBjknZGxPrjrxARy4Hl0HmaaOY5zSxR0j11ROxt/twPrAXmlRzKzLqXsvd7iqSpQ5eBhcDW0oOZWXdSDr9nAmslDV3/3oh4tOhUZta1EUsdEbuAj5yGWcwsA/9Ky6wyLrVZZVxqs8q41GaVcanNKtOqbaJt2SDZttw2zdq2XG8TPYU2bZBsW26bZm1brreJmlnPXGqzyrjUZpVxqc0q41KbVcalNqtMUqklTZe0RtJOSTskfbT0YGbWndR1Rt8DHo2Iz0maAEwuOJOZ9WDEUkuaBswHvgAQEUeAI2XHMrNupRx+zwFeBX4g6SlJdzVrjd7D20TN+kNKqccBlwHfj4hLgbeBW0+8UkQsj4i5ETF3PGdkHtPMUqWUeg+wJyI2NJ+voVNyM+tDI5Y6Il4Gdku6sPnSAmB70anMrGupZ7+/CqxsznzvAm4sN5KZ9SKp1BGxGfA7XZq1gJ9RZlYZl9qsMi61WWVcarPKuNRmlfE2Uee2ata25Xqb6Cm0aYNk23LbNGvbcr1N1Mx65lKbVcalNquMS21WGZfarDIjllrShZI2H/dxQNJNp2M4Mxu9EV+lFRHPAJcASBoA9gJrC89lZl0a7eH3AuD5iPhNiWHMrHepSxKGLAFWDfcNSUuBpQATvUHYbMwk31M3W0+uAX403Pe9eNCsP4zm8HsxsCkiXik1jJn1bjSlvp6THHqbWf9IfS+tKcBVwANlxzGzXqUuHnwbOLvwLGaWgZ9RZlYZl9qsMi61WWVcarPKuNRmlfHiQee2ata25Xrx4Cm0adlc23LbNGvbcr140Mx65lKbVcalNquMS21WGZfarDIutVllUl96+TVJ2yRtlbRK0sTSg5lZd1JWBM8G/g6YGxEXAwN0dpWZWR9KPfweB0ySNA6YDPy23Ehm1osRSx0Re4FvAy8B+4C3ImLdideTtFTSRkkbj3I4/6RmliTl8Pss4FpgDvAhYIqkG068nreJmvWHlMPvTwIvRMSrEXGUzp6yj5Udy8y6lVLql4DLJU2WJDrv0rGj7Fhm1q2Ux9QbgDXAJuDp5u8sLzyXmXUpdZvo7cDthWcxswz8jDKzyrjUZpVxqc0q41KbVcalNquMt4k6t1Wzti3X20RPoU0bJNuW26ZZ25brbaJm1jOX2qwyLrVZZVxqs8q41GaVcanNKpO6TXRZs0l0m6SbSg9lZt1LWWd0MfAlYB7wEeBqSR8uPZiZdSflnvpPgA0R8T8RcQx4Avhs2bHMrFsppd4KfELS2ZImA58CzjvxSt4matYfRtx8EhE7JP0LsA54G9gMvDvM9ZbTrDn6gD6Y/7mnZpYk6URZRKyIiD+NiPnAG8CzZccys24l7SiTdG5E7Jf0h3QeT19ediwz61ZSqYH7JZ0NHAW+HBFvFpzJzHqQuk30E6UHMbM8/Iwys8q41GaVcanNKuNSm1XGpTarTJFtosBfAb9O+CszgNcS46cBqWsZnduuWduW2w+zXhAR04b9TkSM2QewcRTXXe7c9Nw2zdq23H6ftU2H3z92brHcNs3attzTPmtrSh0RRf5xnNuuWduWOxazjnWpS715vXPbNWvbcvt61iLv0GFmY2es76nNLDOX2qwyY1ZqSYskPSPpOUm3Zsq8W9J+SVtz5DWZ50l6XNL2Zpvqsky5EyX9UtKWJvdbOXKPyx+Q9JSkhzJmvijpaUmbJW3MlDld0hpJOyXtkPTRDJkXNjMOfRzItQVX0tea/6+tklZJmpgpN9/G3tTfi+X8AAaA54E/BiYAW4CLMuTOBy4DtmacdRZwWXN5Kp2tLzlmFXBmc3k8sAG4POPcXwfuBR7KmPkiMCPzz8I9wN80lycA0wv8rL0M/FGGrNnAC8Ck5vPVwBcy5F5MZxfgZDovh/534MPd5o3VPfU84LmI2BURR4D7gGt7DY2I9cDrveackLkvIjY1lw8CO+j85/aaGxFxqPl0fPOR5aylpEHg08BdOfJKkTSNzg3xCoCIOBL5F3AsAJ6PiN9kyhsHTJI0jk4Jf5shM+vG3rEq9Wxg93Gf7yFDUUqTdD5wKZ171Rx5A5I2A/uBxyIiSy7wXeCbwO8z5Q0JYJ2kJyUtzZA3B3gV+EHzUOEuSVMy5B5vCbAqR1BE7AW+DbwE7APeioh1GaKTNvam8omyRJLOBO4HboqIAzkyI+LdiLgEGATmNW+c0BNJVwP7I+LJngf8/z4eEZcBi4EvS5rfY944Og+Xvh8Rl9LZVpvl/AqApAnANcCPMuWdReeIcg7wIWCKpBt6zY2IHcDQxt5HOcnG3lRjVeq9vPeWaLD5Wl+SNJ5OoVdGxAO585tDzseBRRnirgCukfQinYc1V0r6YYbcoXsqImI/sJbOw6he7AH2HHeEsoZOyXNZDGyKiFcy5X0SeCEiXo2Io8ADwMdyBEfGjb1jVepfARdImtPcmi4BHhyjWU5Jkug85tsREd/JmHuOpOnN5UnAVcDOXnMj4raIGIyI8+n8u/4sInq+N5E0RdLUocvAQjqHjb3M+jKwW9KFzZcWANt7GvS9rifToXfjJeBySZObn4sFdM6x9EzSuc2fQxt77+02K3WbaFYRcUzSV4Cf0Dk7eXdEbOs1V9Iq4M+BGZL2ALdHxIoeY68APg883Tz+Bfj7iHi4x9xZwD2SBujcuK6OiGy/fipgJrC287PMOODeiHg0Q+5XgZXNjfsu4MYMmUM3PFcBf5sjDyAiNkhaA2wCjgFPke8po9k29vppomaV8Ykys8q41GaVcanNKuNSm1XGpTarjEttVhmX2qwy/wufCGzew3+2hgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "code", "metadata": { - "id": "uaDjY7gK6aBa" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "uaDjY7gK6aBa", + "outputId": "62af3cbd-4098-4c6f-8519-8fdba1146397" }, "source": [ "# 5 layer PixelCNN\n", @@ -392,7 +503,20 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOaElEQVR4nO3df6zV9X3H8edrFxi/LCgoQS4bLDVkhsQfJczWlmxSGbRWk2XpMLFJzSb9oz+w1Ta6/eH6h8uWNk37x9KEiJ2JiLEoiTNWcauVNNmwgDAvXLSKVC5FgWoFnJUffe+P870bsgv3c8/5fO89309fj+SGc+89vvKO8Lrne773e95HEYGZleP3xnoAM8vLpTYrjEttVhiX2qwwLrVZYcbVETrzop6YN3d81szjv5nJ1IlHsmY6t75M59aXCbBv/0mOvHVaQ32vllLPmzue55+emzVzc99qliz8XtZM59aX6dz6MgEW//n+c37Ph99mhXGpzQrjUpsVxqU2K4xLbVYYl9qsMEmllrRc0kuSXpF0V91DmVn7hi21pB7gn4EVwOXAzZIur3swM2tPyiP1YuCViNgbESeAh4Gb6h3LzNqVUuo5wJmXrwxUX/sASaskbZW09fCvTueaz8xGKNuJsohYExGLImLRxTN6csWa2QillPoAcOaF3L3V18ysC6WU+mfAZZLmS5oArAQer3csM2vXsK/SiohTkr4EPA30APdHxK7aJzOztiS99DIingSerHkWM8vAV5SZFcalNiuMS21WGJfarDAutVlhlPO9tCR9BvjMnEtn3PbgA3+fLRfg+HuzmDrpzayZzq0v07n1ZQLcecedbN35myG3iWYt9aBFV0wMbxNtTm6TZm1abp3bRM9Vah9+mxXGpTYrjEttVhiX2qwwLrVZYVxqs8KkLB68X9IhSX2jMZCZdSblkfpfgOU1z2FmmQxb6ojYDLw1CrOYWQbZnlN7m6hZd/A2UbPC+Oy3WWFcarPCpPxKaz3wH8ACSQOS/rr+scysXSkrgm8ejUHMLA8ffpsVxqU2K4xLbVYYl9qsMC61WWG8TdS5jZq1abnH35vFwZePZc0EuOPOOzkab3mbqHNHL9O5/5d577LnsmYCbIl/P2epffhtVhiX2qwwLrVZYVxqs8K41GaFcanNCpPy0su5kp6VtFvSLkmrR2MwM2vPsC+9BE4Bd0TEdkkXANskPRMRu2uezczakLJN9GBEbK9uHwP6gTl1D2Zm7RnRc2pJ84CrgC1DfM/bRM26QHKpJU0FHgVuj4ijZ3/f20TNukNSqSWNp1XodRHxWL0jmVknUs5+C1gL9EfEd+ofycw6kfJIfS3wOeA6STuqj0/VPJeZtSllm+hPgSFf4mVm3cdXlJkVxqU2K4xLbVYYl9qsMCnXfpv9Tvj5zsncu+zKrJmf/dbkrHkpvE3UuY2atc7cI7+azdsD72TNvLB3WvZM8DZR545BZhNz1667m0e+/qOsmZ/91orsmeBtoma/U1xqs8K41GaFcanNCuNSmxUm5aWXEyU9L2lntXjwm6MxmJm1J+Xik/eB6yLieLUs4aeSfhQR/1nzbGbWhpSXXgZwvPp0fPWR/5fbZpZF6jqjHkk7gEPAMxHhxYNmXSqp1BFxOiKuBHqBxZIWDnEfLx406wIjOvsdEb8GngWW1zOOmXUq5ez3xZKmV7cnAdcDe+oezMzak3L2ezbwgKQeWj8EHomIJ+ody8zalXL2+79ovSuHmTWArygzK4xLbVYYl9qsMC61WWFcarPCePGgcxs162DuwZePZc+tY0mgFw+eR9OW2DUpt0mzDubeu+y57Ll1LAn04kEz65hLbVYYl9qsMC61WWFcarPCuNRmhUkudbXS6AVJftmlWRcbySP1aqC/rkHMLI/UxYO9wKeB++odx8w6lfpI/V3gG8Bvz3UHbxM16w4pO8puAA5FxLbz3c/bRM26Q8oj9bXAjZL2AQ8D10l6sNapzKxtw5Y6Iu6OiN6ImAesBH4cEbfUPpmZtcW/pzYrTMqK4P8VET8BflLLJGaWhR+pzQrjUpsVxqU2K4xLbVYYl9qsMN4m6lyOvzeL19475xXAbZs1fgLv7H07e25dGzq9TfQ8vE20Wbmb+1Zz6673s2YCfG12L4+v3JA9t64Nnd4mamZdyaU2K4xLbVYYl9qsMC61WWFcarPCJL1Kq1qQcAw4DZyKiEV1DmVm7RvJSy//LCKO1DaJmWXhw2+zwqSWOoBNkrZJWjXUHbxN1Kw7pB5+fzwiDki6BHhG0p6I2HzmHSJiDbAGWpeJZp7TzBIlPVJHxIHqz0PARmBxnUOZWftS9n5PkXTB4G1gGdBX92Bm1p6Uw+9ZwEZJg/d/KCKeqnUqM2vbsKWOiL3AFaMwi5ll4F9pmRXGpTYrjEttVhiX2qwwLrVZYWrZJjrzwotv+4e/+8dsudCsDZJNy23SrE3LLWab6Id0UfyJlmbNbNIGyablNmnWpuV6m6iZdcylNiuMS21WGJfarDAutVlhXGqzwiSVWtJ0SRsk7ZHUL+mjdQ9mZu1JXWf0PeCpiPhLSROAyTXOZGYdGLbUkqYBS4DPA0TECeBEvWOZWbtSDr/nA4eBH0h6QdJ91VqjDzhzm+hJ8r/XsZmlSSn1OOBq4PsRcRXwLnDX2XeKiDURsSgiFo3n9zOPaWapUko9AAxExJbq8w20Sm5mXWjYUkfEG8B+SQuqLy0Fdtc6lZm1LfXs95eBddWZ773ArfWNZGadSCp1ROwA/E6XZg3gK8rMCuNSmxXGpTYrjEttVhiX2qww3ibq3EbN2rRcbxM9jyZtkGxabpNmbVqut4maWcdcarPCuNRmhXGpzQrjUpsVZthSS1ogaccZH0cl3T4aw5nZyA37Kq2IeAm4EkBSD3AA2FjzXGbWppEefi8FXo2IX9QxjJl1LnVJwqCVwPqhviFpFbAKYKI3CJuNmeRH6mrryY3AD4f6vhcPmnWHkRx+rwC2R8SbdQ1jZp0bSalv5hyH3mbWPVLfS2sKcD3wWL3jmFmnUhcPvgvMqHkWM8vAV5SZFcalNiuMS21WGJfarDAutVlhvHjQuY2atWm5Xjx4Hk1aNte03CbN2rRcLx40s4651GaFcanNCuNSmxXGpTYrjEttVpjUl15+VdIuSX2S1kuaWPdgZtaelBXBc4CvAIsiYiHQQ2tXmZl1odTD73HAJEnjgMnAL+sbycw6MWypI+IA8G3gdeAg8E5EbDr7fpJWSdoqaetJ3s8/qZklSTn8vhC4CZgPXApMkXTL2ffzNlGz7pBy+P1J4LWIOBwRJ2ntKftYvWOZWbtSSv06cI2kyZJE6106+usdy8zalfKceguwAdgOvFj9N2tqnsvM2pS6TfQe4J6aZzGzDHxFmVlhXGqzwrjUZoVxqc0K41KbFcbbRJ3bqFmbluttoufRpA2STctt0qxNy/U2UTPrmEttVhiX2qwwLrVZYVxqs8K41GaFSd0murraJLpL0u11D2Vm7UtZZ7QQuA1YDFwB3CDpw3UPZmbtSXmk/mNgS0T8d0ScAp4D/qLescysXSml7gM+IWmGpMnAp4C5Z9/J20TNusOwm08iol/SPwGbgHeBHcDpIe63hmrN0Yd0Uf5rT80sSdKJsohYGxEfiYglwNvAy/WOZWbtStpRJumSiDgk6Q9oPZ++pt6xzKxdSaUGHpU0AzgJfDEifl3jTGbWgdRtop+oexAzy8NXlJkVxqU2K4xLbVYYl9qsMC61WWFq2SYK/BXw84T/ZCZwJDF+GpC6ltG5zZq1abndMOtlETFtyO9ExJh9AFtHcN81zk3PbdKsTcvt9lmbdPj9r86tLbdJszYtd9RnbUypI6KW/znObdasTcsdi1nHutR1vXm9c5s1a9Nyu3rWWt6hw8zGzlg/UptZZi61WWHGrNSSlkt6SdIrku7KlHm/pEOS+nLkVZlzJT0raXe1TXV1ptyJkp6XtLPK/WaO3DPyeyS9IOmJjJn7JL0oaYekrZkyp0vaIGmPpH5JH82QuaCacfDjaK4tuJK+Wv199UlaL2liptx8G3tTfy+W8wPoAV4F/giYAOwELs+QuwS4GujLOOts4Orq9gW0tr7kmFXA1Or2eGALcE3Gub8GPAQ8kTFzHzAz87+FB4C/qW5PAKbX8G/tDeAPM2TNAV4DJlWfPwJ8PkPuQlq7ACfTejn0vwEfbjdvrB6pFwOvRMTeiDgBPAzc1GloRGwG3uo056zMgxGxvbp9DOin9ZfbaW5ExPHq0/HVR5azlpJ6gU8D9+XIq4ukabR+EK8FiIgTkX8Bx1Lg1Yj4Raa8ccAkSeNolfCXGTKzbuwdq1LPAfaf8fkAGYpSN0nzgKtoParmyOuRtAM4BDwTEVlyge8C3wB+mylvUACbJG2TtCpD3nzgMPCD6qnCfZKmZMg900pgfY6giDgAfBt4HTgIvBMRmzJEJ23sTeUTZYkkTQUeBW6PiKM5MiPidERcCfQCi6s3TuiIpBuAQxGxreMB/7+PR8TVwArgi5KWdJg3jtbTpe9HxFW0ttVmOb8CIGkCcCPww0x5F9I6opwPXApMkXRLp7kR0Q8Mbux9inNs7E01VqU+wAd/EvVWX+tKksbTKvS6iHgsd351yPkssDxD3LXAjZL20Xpac52kBzPkDj5SERGHgI20nkZ1YgAYOOMIZQOtkueyAtgeEW9myvsk8FpEHI6Ik8BjwMdyBEfGjb1jVeqfAZdJml/9NF0JPD5Gs5yXJNF6ztcfEd/JmHuxpOnV7UnA9cCeTnMj4u6I6I2IebT+v/44Ijp+NJE0RdIFg7eBZbQOGzuZ9Q1gv6QF1ZeWArs7GvSDbibToXfldeAaSZOrfxdLaZ1j6ZikS6o/Bzf2PtRuVuo20awi4pSkLwFP0zo7eX9E7Oo0V9J64E+BmZIGgHsiYm2HsdcCnwNerJ7/AvxtRDzZYe5s4AFJPbR+uD4SEdl+/VSDWcDG1r9lxgEPRcRTGXK/DKyrfrjvBW7NkDn4g+d64As58gAiYoukDcB24BTwAvkuGc22sdeXiZoVxifKzArjUpsVxqU2K4xLbVYYl9qsMC61WWFcarPC/A9lao9AALc59QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "markdown", @@ -412,7 +536,8 @@ "id": "2zK_0-Ck7_sW" }, "source": [ - "![stacks.png]()" + "\n", + "![Screenshot 2021-07-30 at 20.20.35.png]()" ] }, { @@ -492,7 +617,7 @@ " shape=(self.filters,),\n", " initializer=self.bias_initializer,\n", " trainable=True)\n", - " mask = np.ones(self.kernel.shape, dtype=np.float64)\n", + " mask = np.ones(self.kernel.shape, dtype=np.float32)\n", "\n", " # Get centre of the filter for even or odd dimensions\n", " if kernel_h % 2 != 0:\n", @@ -512,7 +637,7 @@ " mask[center_h, center_w + (self.mask_type == 'B'):, :, :] = 0.\n", " mask[center_h + 1:, :, :] = 0.\n", "\n", - " self.mask = tf.constant(mask, dtype=tf.float64, name='mask')\n", + " self.mask = tf.constant(mask, dtype=tf.float32, name='mask')\n", "\n", " def call(self, input):\n", " masked_kernel = tf.math.multiply(self.mask, self.kernel)\n", @@ -621,13 +746,31 @@ { "cell_type": "code", "metadata": { - "id": "dhFgEQI6clrA" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "dhFgEQI6clrA", + "outputId": "515b8c20-9c38-45f7-e201-e85bb5e3d527" }, "source": [ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOMElEQVR4nO3da6xldX3G8e/TuTjMgICABBlaaKSkhoRLCUVRbEEIeMGkaVpINJG0Tl+oBcUarS+ML9q0qTH6ojGZANZELsEBEmsUoYoSk3Z0GMYyMGgREGZEB8MdLTd/fbH3NAOdy5q915pz1r/fT3Iy+5yz58kvc+bZe+119v7tVBWS2vFbCz2ApH5ZaqkxllpqjKWWGmOppcYsHSJ0eV5VK1jVa+YhRx3EE4883WumucNlmjtcJsB/8yzP13PZ1fcGKfUKVvGHOafXzD+7/AKu/5tv9Jpp7nCZ5g6XCbC+vrXb73n4LTXGUkuNsdRSYyy11BhLLTXGUkuN6VTqJOcn+VGS+5J8fOihJM1ur6VOsgT4Z+AC4A3AxUneMPRgkmbT5Z76dOC+qrq/qp4HrgPePexYkmbVpdRHAw/v9PnW6ddeJsmaJBuSbHiB5/qaT9I+6u1EWVWtrarTquq0Zbyqr1hJ+6hLqbcBx+z0+erp1yQtQl1K/QPg+CTHJVkOXAR8ddixJM1qr6/SqqoXk3wQ+CawBLiqqu4efDJJM+n00suq+jrw9YFnkdQDn1EmNcZSS42x1FJjLLXUGEstNSZ9vpdWkncB7zr80CPe//ef/IfecgEOXX0wj299stdMc4fLNHe4TIDLP/pRnqrHdrlNtNdS7/DqvKZ63yb6TwNtkDR3VLOOLXeoWdfXt3Zbag+/pcZYaqkxllpqjKWWGmOppcZYaqkxXRYPXpVke5LN+2MgSfPpck/9L8D5A88hqSd7LXVV3Q48th9mkdSD3t6fOskaYA3AClb2FStpH7lNVGqMZ7+lxlhqqTFdfqV1LfDvwAlJtib5i+HHkjSrLiuCL94fg0jqh4ffUmMstdQYSy01xlJLjbHUUmPcJmruqGYdW67bRPdgTBskx5Y7plnHlus2UUlzs9RSYyy11BhLLTXGUkuNsdRSY7q89PKYJLcluSfJ3Uku3R+DSZpNlx1lLwKXV9XGJAcBdyS5taruGXg2STPosk30karaOL38NLAFOHrowSTNZp+2iSY5FjgFWL+L77lNVFoEOp8oS3IgcANwWVU99crvu01UWhw6lTrJMiaFvrqqbhx2JEnz6HL2O8CVwJaq+uzwI0maR5d76jOB9wJnJ9k0/Xj7wHNJmlGXbaLfA3b5Ei9Ji4/PKJMaY6mlxlhqqTGWWmpMb+9Prf3j+JN+xTd/tqnXzNs3v7X3zKFztXtuEx1Z7lG/dxAHHvCLXjOf+fWRvWcOnfvIj5/uPddtonvgNtHhcj95y1s568TP95p5++ZLe88cOvfvzvtu77luE5W0KFlqqTGWWmqMpZYaY6mlxnR56eWKJN9P8sPp4sFP74/BJM2my5NPngPOrqpnpssSvpfkG1X1HwPPJmkGXV56WcAz00+XTT/6/+W2pF50XWe0JMkmYDtwa1XtcvFgkg1JNrzAc33PKamjTqWuqpeq6mRgNXB6khN3cR0XD0qLwD6d/a6qJ4DbgPOHGUfSvLqc/T4iySHTywcA5wL3Dj2YpNl0Oft9FPClJEuY3AhcX1VfG3YsSbPqcvb7P5m8K4ekEfAZZVJjLLXUGEstNcZSS42x1FJjXDw4slwXD7p4EFw82FSuiwddPAguHpT+X7HUUmMstdQYSy01xlJLjbHUUmM6l3q60ujOJL7sUlrE9uWe+lJgy1CDSOpH18WDq4F3AFcMO46keXW9p/4c8DHgN7u7gttEpcWhy46ydwLbq+qOPV3PbaLS4tDlnvpM4MIkDwLXAWcn+fKgU0ma2V5LXVWfqKrVVXUscBHw7ap6z+CTSZqJv6eWGtNlRfD/qqrvAN8ZZBJJvfCeWmqMpZYaY6mlxlhqqTGWWmqM20RHljvUNtEHfr3bZwDP7Mhly3ny/sd7zx3Tz8xtonswtq2fY9smesnd/T9f/yNHrearF63rPXdMPzO3iUqam6WWGmOppcZYaqkxllpqjKWWGtPpVVrTBQlPAy8BL1bVaUMOJWl2+/LSyz+uql8ONomkXnj4LTWma6kLuCXJHUnW7OoKbhOVFoeuh99vrqptSV4L3Jrk3qq6fecrVNVaYC1Mniba85ySOup0T11V26Z/bgduAk4fcihJs+uy93tVkoN2XAbOAzYPPZik2XQ5/D4SuCnJjutfU1U3DzqVpJnttdRVdT9w0n6YRVIP/JWW1BhLLTXGUkuNsdRSYyy11Bi3iZo7qlnHlus20T0Y0wbJseWOadax5bpNVNLcLLXUGEstNcZSS42x1FJjLLXUmE6lTnJIknVJ7k2yJckbhx5M0my6rjP6PHBzVf1pkuXAygFnkjSHvZY6ycHAWcD7AKrqeeD5YceSNKsuh9/HAY8CX0xyZ5IrpmuNXsZtotLi0KXUS4FTgS9U1SnAs8DHX3mlqlpbVadV1WnLeFXPY0rqqkuptwJbq2r99PN1TEouaRHaa6mr6ufAw0lOmH7pHOCeQaeSNLOuZ78/BFw9PfN9P3DJcCNJmkenUlfVJsB3upRGwGeUSY2x1FJjLLXUGEstNcZSS41xm6i5o5p1bLluE92DMW2QHFvumGYdW67bRCXNzVJLjbHUUmMstdQYSy01Zq+lTnJCkk07fTyV5LL9MZykfbfXV2lV1Y+AkwGSLAG2ATcNPJekGe3r4fc5wE+q6qdDDCNpfl2XJOxwEXDtrr6RZA2wBmCFG4SlBdP5nnq69eRC4Cu7+r6LB6XFYV8Ovy8ANlbVL4YaRtL89qXUF7ObQ29Ji0fX99JaBZwL3DjsOJLm1XXx4LPAYQPPIqkHPqNMaoyllhpjqaXGWGqpMZZaaoyLB80d1axjy3Xx4B6Madnc2HLHNOvYcl08KGlullpqjKWWGmOppcZYaqkxllpqTNeXXn44yd1JNie5NsmKoQeTNJsuK4KPBv4aOK2qTgSWMNlVJmkR6nr4vRQ4IMlSYCXws+FGkjSPvZa6qrYBnwEeAh4BnqyqW155vSRrkmxIsuEFnut/UkmddDn8PhR4N3Ac8DpgVZL3vPJ6bhOVFocuh99vAx6oqker6gUme8reNOxYkmbVpdQPAWckWZkkTN6lY8uwY0maVZfH1OuBdcBG4K7p31k78FySZtR1m+ingE8NPIukHviMMqkxllpqjKWWGmOppcZYaqkxbhM1d1Szji3XbaJ7MKYNkmPLHdOsY8t1m6ikuVlqqTGWWmqMpZYaY6mlxlhqqTFdt4leOt0keneSy4YeStLsuqwzOhF4P3A6cBLwziSvH3owSbPpck/9+8D6qvpVVb0IfBf4k2HHkjSrLqXeDLwlyWFJVgJvB4555ZXcJiotDnvdfFJVW5L8I3AL8CywCXhpF9dby3TN0avzmv6feyqpk04nyqrqyqr6g6o6C3gc+PGwY0maVacdZUleW1Xbk/w2k8fTZww7lqRZdSo1cEOSw4AXgA9U1RMDziRpDl23ib5l6EEk9cNnlEmNsdRSYyy11BhLLTXGUkuNGWSbKPDnwH91+CuHA7/sGH8w0HUto7njmnVsuYth1uOr6uBdfqeqFuwD2LAP111rbvfcMc06ttzFPuuYDr//1dzBcsc069hy9/usoyl1VQ3yj2PuuGYdW+5CzLrQpR7qzevNHdesY8td1LMO8g4dkhbOQt9TS+qZpZYas2ClTnJ+kh8luS/Jx3vKvCrJ9iSb+8ibZh6T5LYk90y3qV7aU+6KJN9P8sNp7qf7yN0pf0mSO5N8rcfMB5PclWRTkg09ZR6SZF2Se5NsSfLGHjJPmM644+OpvrbgJvnw9Oe1Ocm1SVb0lNvfxt6uvxfr8wNYAvwE+F1gOfBD4A095J4FnAps7nHWo4BTp5cPYrL1pY9ZAxw4vbwMWA+c0ePcHwGuAb7WY+aDwOE9/1/4EvCX08vLgUMG+L/2c+B3esg6GngAOGD6+fXA+3rIPZHJLsCVTF4O/W/A62fNW6h76tOB+6rq/qp6HrgOePe8oVV1O/DYvDmvyHykqjZOLz8NbGHyw503t6rqmemny6YfvZy1TLIaeAdwRR95Q0lyMJMb4isBqur56n8BxznAT6rqpz3lLQUOSLKUSQl/1kNmrxt7F6rURwMP7/T5VnooytCSHAucwuRetY+8JUk2AduBW6uql1zgc8DHgN/0lLdDAbckuSPJmh7yjgMeBb44fahwRZJVPeTu7CLg2j6Cqmob8BngIeAR4MmquqWH6E4be7vyRFlHSQ4EbgAuq6qn+sisqpeq6mRgNXD69I0T5pLkncD2qrpj7gH/rzdX1anABcAHkpw1Z95SJg+XvlBVpzDZVtvL+RWAJMuBC4Gv9JR3KJMjyuOA1wGrkrxn3tyq2gLs2Nh7M7vZ2NvVQpV6Gy+/JVo9/dqilGQZk0JfXVU39p0/PeS8DTi/h7gzgQuTPMjkYc3ZSb7cQ+6OeyqqajtwE5OHUfPYCmzd6QhlHZOS9+UCYGNV/aKnvLcBD1TVo1X1AnAj8KY+gqvHjb0LVeofAMcnOW56a3oR8NUFmmWPkoTJY74tVfXZHnOPSHLI9PIBwLnAvfPmVtUnqmp1VR3L5N/121U1971JklVJDtpxGTiPyWHjPLP+HHg4yQnTL50D3DPXoC93MT0dek89BJyRZOX0/8U5TM6xzC3Ja6d/7tjYe82sWV23ifaqql5M8kHgm0zOTl5VVXfPm5vkWuCPgMOTbAU+VVVXzhl7JvBe4K7p41+Av62qr8+ZexTwpSRLmNy4Xl9Vvf36aQBHAjdN/i+zFLimqm7uIfdDwNXTG/f7gUt6yNxxw3Mu8Fd95AFU1fok64CNwIvAnfT3lNHeNvb6NFGpMZ4okxpjqaXGWGqpMZZaaoyllhpjqaXGWGqpMf8DsdB7WCt2dpcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "markdown", @@ -645,7 +788,12 @@ { "cell_type": "code", "metadata": { - "id": "S8TfMRxqg5tb" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "S8TfMRxqg5tb", + "outputId": "8862c405-8866-4c71-d47d-c5cf02444917" }, "source": [ "# 2 layers Gated PixelCNN\n", @@ -657,12 +805,30 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOFklEQVR4nO3dbczddX3H8fdnvbG0VIrcpVI2WHRkhkRgDUNRtoEY8AaTZdlKgolks3ugDhRnZD4gPlm2zBh9sJg0gDMRMFghUYJYpjhislVLKbOlsHEntALFyf0cd3734JwuhfXm33P+/17X+eX9Sq70XNd1+sk37fU553/+1znfk6pCUjt+Y64HkNQvSy01xlJLjbHUUmMstdSYhUOELs4bagnLes1csXI5Tz/2XK+Z5g6Xae5wmQD/wwu8VC9mb98bpNRLWMbv59xeM//08gu44a+/22umucNlmjtcJsDG+v4+v+fht9QYSy01xlJLjbHUUmMstdQYSy01plOpk5yf5L4k9yf57NBDSZrcAUudZAHwj8AFwNuAi5K8bejBJE2myz31GcD9VfVgVb0EfAP40LBjSZpUl1IfDzy6x+c7xl97jSRrk2xKsullXuxrPkkHqbcTZVW1rqpWV9XqRbyhr1hJB6lLqXcCJ+zx+arx1yTNQ11K/RPgrUlOSrIYWAN8e9ixJE3qgK/SqqpXknwc+B6wALimqrYNPpmkiXR66WVV3QLcMvAsknrgM8qkxlhqqTGWWmqMpZYaY6mlxqTP99JK8kHgg0cfecxH//Zzf9dbLsCRq47gqR3P9Jpp7nCZ5g6XCXD5pz/Ns/XLvW4T7bXUu70xb6ret4n+w0AbJM2dqVlnLXeoWTfW9/dZag+/pcZYaqkxllpqjKWWGmOppcZYaqkxXRYPXpNkV5Kth2IgSdPpck/9T8D5A88hqScHLHVV3QH88hDMIqkHvb0/dZK1wFqAJSztK1bSQXKbqNQYz35LjbHUUmO6/ErreuBfgZOT7Ejy58OPJWlSXVYEX3QoBpHUDw+/pcZYaqkxllpqjKWWGmOppca4TXSg3JW/s5zDD3ui99znf3Vc77lDZM5i7i/+a6XbRPfFbaLwuQ1/wNmnfLn33Du2Xtp77hCZs5h79bVXuE1U0vxjqaXGWGqpMZZaaoyllhpjqaXGdHnp5QlJbk9yT5JtSS49FINJmkyXHWWvAJdX1eYky4E7k9xWVfcMPJukCXTZJvpYVW0eX34O2A4cP/RgkiZzUNtEk5wInAZs3Mv33CYqzQOdT5QlORz4FnBZVT37+u+7TVSaHzqVOskiRoW+tqpuHHYkSdPocvY7wNXA9qr64vAjSZpGl3vqs4APA+ck2TL+eN/Ac0maUJdtoj8C9voSL0nzj88okxpjqaXGWGqpMZZaaoyllhrjNlG3ic7c1k+3ibpNdE5y3SY6e7luE5U0L1lqqTGWWmqMpZYaY6mlxnR56eWSJD9Ocvd48eDnD8VgkibTZZ3Ri8A5VfX8eFnCj5J8t6r+beDZJE2gy0svC3h+/Omi8Uf/v9yW1Iuu64wWJNkC7AJuq6q9Lh5MsinJppd5se85JXXUqdRV9WpVnQqsAs5IcsperuPiQWkeOKiz31X1NHA7cP4w40iaVpez38ckWTG+fBhwHnDv0INJmkyXs98rga8lWcDoRuCGqrp52LEkTarL2e9/Z/SuHJJmgM8okxpjqaXGWGqpMZZaaoyllhrj4kEXD87cgkAXD7p4cE5yXTw4e7kuHpQ0L1lqqTGWWmqMpZYaY6mlxlhqqTGdSz1eaXRXEl92Kc1jB3NPfSmwfahBJPWj6+LBVcD7gauGHUfStLreU38J+Azw631dwW2i0vzQZUfZB4BdVXXn/q7nNlFpfuhyT30WcGGSh4FvAOck+fqgU0ma2AFLXVVXVNWqqjoRWAP8oKouHnwySRPx99RSY7qsCP4/VfVD4IeDTCKpF95TS42x1FJjLLXUGEstNcZSS41xm6jbRHn+V8fx0K/2+QzgiR23aDHPPPhU77mz9LPgNtH9cJvoyFDbRC/Z1v/z9T+1chXfXrO+99xZ+llwm6ikqVlqqTGWWmqMpZYaY6mlxlhqqTGdXqU1XpDwHPAq8EpVrR5yKEmTO5iXXv5RVf1isEkk9cLDb6kxXUtdwIYkdyZZu7cruE1Umh+6Hn6/q6p2JjkWuC3JvVV1x55XqKp1wDoYPU205zklddTpnrqqdo7/3AXcBJwx5FCSJtdl7/eyJMt3XwbeC2wdejBJk+ly+H0ccFOS3de/rqpuHXQqSRM7YKmr6kHg7YdgFkk98FdaUmMstdQYSy01xlJLjbHUUmPcJmruTM06a7luE92PWdogOWu5szTrrOW6TVTS1Cy11BhLLTXGUkuNsdRSYyy11JhOpU6yIsn6JPcm2Z7kHUMPJmkyXdcZfRm4tar+JMliYOmAM0mawgFLneQI4GzgIwBV9RLw0rBjSZpUl8Pvk4Anga8muSvJVeO1Rq/hNlFpfuhS6oXA6cBXquo04AXgs6+/UlWtq6rVVbV6EW/oeUxJXXUp9Q5gR1VtHH++nlHJJc1DByx1VT0OPJrk5PGXzgXuGXQqSRPrevb7E8C14zPfDwKXDDeSpGl0KnVVbQF8p0tpBviMMqkxllpqjKWWGmOppcZYaqkxbhM1d6ZmnbVct4nuxyxtkJy13FmaddZy3SYqaWqWWmqMpZYaY6mlxlhqqTEHLHWSk5Ns2ePj2SSXHYrhJB28A75Kq6ruA04FSLIA2AncNPBckiZ0sIff5wIPVNXPhhhG0vS6LknYbQ1w/d6+kWQtsBZgiRuEpTnT+Z56vPXkQuCbe/u+iwel+eFgDr8vADZX1RNDDSNpegdT6ovYx6G3pPmj63tpLQPOA24cdhxJ0+q6ePAF4KiBZ5HUA59RJjXGUkuNsdRSYyy11BhLLTXGxYPmztSss5br4sH9mKVlc7OWO0uzzlquiwclTc1SS42x1FJjLLXUGEstNcZSS43p+tLLTybZlmRrkuuTLBl6MEmT6bIi+Hjgr4DVVXUKsIDRrjJJ81DXw++FwGFJFgJLgZ8PN5KkaRyw1FW1E/gC8AjwGPBMVW14/fWSrE2yKcmml3mx/0klddLl8PtI4EPAScCbgWVJLn799dwmKs0PXQ6/3wM8VFVPVtXLjPaUvXPYsSRNqkupHwHOTLI0SRi9S8f2YceSNKkuj6k3AuuBzcBPx39n3cBzSZpQ122iVwJXDjyLpB74jDKpMZZaaoyllhpjqaXGWGqpMW4TNXemZp21XLeJ7scsbZCctdxZmnXWct0mKmlqllpqjKWWGmOppcZYaqkxllpqTNdtopeON4luS3LZ0ENJmlyXdUanAB8FzgDeDnwgyVuGHkzSZLrcU/8usLGq/ruqXgH+BfjjYceSNKkupd4KvDvJUUmWAu8DTnj9ldwmKs0PB9x8UlXbk/w9sAF4AdgCvLqX661jvObojXlT/889ldRJpxNlVXV1Vf1eVZ0NPAX8x7BjSZpUpx1lSY6tql1JfpPR4+kzhx1L0qQ6lRr4VpKjgJeBj1XV0wPOJGkKXbeJvnvoQST1w2eUSY2x1FJjLLXUGEstNcZSS40ZZJso8GfAf3b4K0cDv+gYfwTQdS2jubM166zlzodZ31pVR+z1O1U1Zx/ApoO47jpzu+fO0qyzljvfZ52lw+/vmDtY7izNOmu5h3zWmSl1VQ3yj2PubM06a7lzMetcl3qoN683d7ZmnbXceT3rIO/QIWnuzPU9taSeWWqpMXNW6iTnJ7kvyf1JPttT5jVJdiXZ2kfeOPOEJLcnuWe8TfXSnnKXJPlxkrvHuZ/vI3eP/AVJ7kpyc4+ZDyf5aZItSTb1lLkiyfok9ybZnuQdPWSePJ5x98ezfW3BTfLJ8f/X1iTXJ1nSU25/G3u7/l6szw9gAfAA8NvAYuBu4G095J4NnA5s7XHWlcDp48vLGW196WPWAIePLy8CNgJn9jj3p4DrgJt7zHwYOLrnn4WvAX8xvrwYWDHAz9rjwG/1kHU88BBw2PjzG4CP9JB7CqNdgEsZvRz6n4G3TJo3V/fUZwD3V9WDVfUS8A3gQ9OGVtUdwC+nzXld5mNVtXl8+TlgO6P/3Glzq6qeH3+6aPzRy1nLJKuA9wNX9ZE3lCRHMLohvhqgql6q/hdwnAs8UFU/6ylvIXBYkoWMSvjzHjJ73dg7V6U+Hnh0j8930ENRhpbkROA0RveqfeQtSLIF2AXcVlW95AJfAj4D/LqnvN0K2JDkziRre8g7CXgS+Or4ocJVSZb1kLunNcD1fQRV1U7gC8AjwGPAM1W1oYfoTht7u/JEWUdJDge+BVxWVc/2kVlVr1bVqcAq4IzxGydMJckHgF1VdefUA/5/76qq04ELgI8lOXvKvIWMHi59papOY7SttpfzKwBJFgMXAt/sKe9IRkeUJwFvBpYluXja3KraDuze2Hsr+9jY29VclXonr70lWjX+2ryUZBGjQl9bVTf2nT8+5LwdOL+HuLOAC5M8zOhhzTlJvt5D7u57KqpqF3ATo4dR09gB7NjjCGU9o5L35QJgc1U90VPee4CHqurJqnoZuBF4Zx/B1ePG3rkq9U+AtyY5aXxrugb49hzNsl9Jwugx3/aq+mKPucckWTG+fBhwHnDvtLlVdUVVraqqExn9u/6gqqa+N0myLMny3ZeB9zI6bJxm1seBR5OcPP7SucA9Uw36WhfR06H32CPAmUmWjn8uzmV0jmVqSY4d/7l7Y+91k2Z13Sbaq6p6JcnHge8xOjt5TVVtmzY3yfXAHwJHJ9kBXFlVV08ZexbwYeCn48e/AH9TVbdMmbsS+FqSBYxuXG+oqt5+/TSA44CbRj/LLASuq6pbe8j9BHDt+Mb9QeCSHjJ33/CcB/xlH3kAVbUxyXpgM/AKcBf9PWW0t429Pk1UaownyqTGWGqpMZZaaoyllhpjqaXGWGqpMZZaasz/AuAwbUDSVViDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "code", "metadata": { - "id": "8ljKvZsrg6yx" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "8ljKvZsrg6yx", + "outputId": "4973d4b5-df97-47b5-8e45-44a7b46a154e" }, "source": [ "# 3 layers Gated PixelCNN\n", @@ -675,12 +841,30 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOMUlEQVR4nO3dfcyddX3H8fdnfbC0ICAoQcoGi4aMkAiMMBQlGwgBHzBZlg0yTCTO7g91xYcZ3f4w/rGnaIz+sZg0gCORh2CFxBFE2ESJyVYtpcxC0fEktFaLUXka48nv/jinS2GlvXrOdfW+r9/er+ROz33fp598096fc65z3ed8T6oKSe34jYUeQFK/LLXUGEstNcZSS42x1FJjlg4RujyvqhWs6jXzsKMP4Vc7nuw109zhMs0dLhPgv3ma5+rZ7Ol7g5R6Bav4vZzTa+Yff+wCrv/Lb/Saae5wmeYOlwmwof71Fb/n4bfUGEstNcZSS42x1FJjLLXUGEstNaZTqZOcn+SHSe5P8smhh5I0u32WOskS4B+BC4ATgYuTnDj0YJJm0+We+nTg/qp6sKqeA64D3jPsWJJm1aXUxwCP7vb5tunXXiLJmiQbk2x8nmf7mk/SfurtRFlVrauq06rqtGW8qq9YSfupS6m3A8fu9vnq6dckLUJdSv194I1Jjk+yHLgI+PqwY0ma1T5fpVVVLyT5EPBNYAlwZVXdM/hkkmbS6aWXVXUzcPPAs0jqgc8okxpjqaXGWGqpMZZaaoyllhqTPt9LK8m7gXcfefhrP/C3f/33veUCHL76UH657fFeM3flHnnEjt5zn3rmKA4+6GejyB3TrGPLfeqZo9jxo/63iX7s4x/nifrFHreJ9lrqXV6d11Tv20Q/O9AGyc9ewPv/9O96z71jy1rOOumLo8gd06xjy71jy1r+5rzv9JoJk22ir1RqD7+lxlhqqTGWWmqMpZYaY6mlxlhqqTFdFg9emWRnki0HYiBJ8+lyT/1PwPkDzyGpJ/ssdVXdAfziAMwiqQe9vT91kjXAGoAVrOwrVtJ+cpuo1BjPfkuNsdRSY7r8Suta4N+AE5JsS/L+4ceSNKsuK4IvPhCDSOqHh99SYyy11BhLLTXGUkuNsdRSY9wm6jbRUc06tly3ie6F20SHyx3TrGPLdZuopLlZaqkxllpqjKWWGmOppcZYaqkxXV56eWyS25Pcm+SeJGsPxGCSZtNlR9kLwMeqalOSQ4A7k9xWVfcOPJukGXTZJrqjqjZNLz8JbAWOGXowSbPZr22iSY4DTgE27OF7bhOVFoHOJ8qSHAx8Dbisqp54+ffdJiotDp1KnWQZk0JfXVU3DDuSpHl0Ofsd4Apga1V9fviRJM2jyz31mcB7gbOTbJ5+vGPguSTNqMs20e8Ce3yJl6TFx2eUSY2x1FJjLLXUGEstNcZSS41xm6jbREc169hy3Sa6F24THS53TLOOLddtopLmZqmlxlhqqTGWWmqMpZYa0+WllyuSfC/J3dPFg585EINJmk2XdUbPAmdX1VPTZQnfTfKNqvr3gWeTNIMuL70s4Knpp8umH/3/cltSL7quM1qSZDOwE7itqva4eDDJxiQbn+fZvueU1FGnUlfVi1V1MrAaOD3JSXu4josHpUVgv85+V9WvgNuB84cZR9K8upz9fm2Sw6aXDwLOBe4bejBJs+ly9vto4KokS5jcCFxfVTcNO5akWXU5+/0fTN6VQ9II+IwyqTGWWmqMpZYaY6mlxlhqqTEuHnTx4KhmHVuuiwf3wsWDw+WOadax5bp4UNLcLLXUGEstNcZSS42x1FJjLLXUmM6lnq40uiuJL7uUFrH9uadeC2wdahBJ/ei6eHA18E7g8mHHkTSvrvfUXwA+Afz6la7gNlFpceiyo+xdwM6qunNv13ObqLQ4dLmnPhO4MMnDwHXA2Um+MuhUkma2z1JX1aeqanVVHQdcBHyrqi4ZfDJJM/H31FJjuqwI/l9V9W3g24NMIqkX3lNLjbHUUmMstdQYSy01xlJLjXGbqNtEeeqZo3jomVd8BvDMjlq2nMcf/GXvuUP+LPSdO9SsbhPdR67bRNdy6T39P1//o0ev5usXre89d8ifhb5zh5rVbaLS/yOWWmqMpZYaY6mlxlhqqTGWWmpMp1dpTRckPAm8CLxQVacNOZSk2e3PSy//oKp+Ptgkknrh4bfUmK6lLuDWJHcmWbOnK7hNVFocuh5+v7Wqtid5HXBbkvuq6o7dr1BV64B1MHmaaM9zSuqo0z11VW2f/rkTuBE4fcihJM2uy97vVUkO2XUZOA/YMvRgkmbT5fD7KODGJLuuf01V3TLoVJJmts9SV9WDwJsOwCySeuCvtKTGWGqpMZZaaoyllhpjqaXGuE3U3FHNOrZct4nuxZg2SI4td0yzji3XbaKS5mappcZYaqkxllpqjKWWGmOppcZ0KnWSw5KsT3Jfkq1J3jz0YJJm03Wd0ReBW6rqj5IsB1YOOJOkOeyz1EkOBc4C3gdQVc8Bzw07lqRZdTn8Ph54DPhykruSXD5da/QSbhOVFocupV4KnAp8qapOAZ4GPvnyK1XVuqo6rapOW8areh5TUlddSr0N2FZVG6afr2dSckmL0D5LXVU/BR5NcsL0S+cA9w46laSZdT37/WHg6umZ7weBS4cbSdI8OpW6qjYDvtOlNAI+o0xqjKWWGmOppcZYaqkxllpqjNtEzR3VrGPLdZvoXoxpg+TYcsc069hy3SYqaW6WWmqMpZYaY6mlxlhqqTH7LHWSE5Js3u3jiSSXHYjhJO2/fb5Kq6p+CJwMkGQJsB24ceC5JM1ofw+/zwEeqKofDzGMpPl1XZKwy0XAtXv6RpI1wBqAFW4QlhZM53vq6daTC4Gv7un7Lh6UFof9Ofy+ANhUVT8bahhJ89ufUl/MKxx6S1o8ur6X1irgXOCGYceRNK+uiwefBo4YeBZJPfAZZVJjLLXUGEstNcZSS42x1FJjXDxo7qhmHVuuiwf3YkzL5saWO6ZZx5br4kFJc7PUUmMstdQYSy01xlJLjbHUUmO6vvTyI0nuSbIlybVJVgw9mKTZdFkRfAzwF8BpVXUSsITJrjJJi1DXw++lwEFJlgIrgZ8MN5Kkeeyz1FW1Hfgc8AiwA3i8qm59+fWSrEmyMcnG53m2/0klddLl8Ptw4D3A8cDrgVVJLnn59dwmKi0OXQ6/3w48VFWPVdXzTPaUvWXYsSTNqkupHwHOSLIySZi8S8fWYceSNKsuj6k3AOuBTcAPpn9n3cBzSZpR122inwY+PfAsknrgM8qkxlhqqTGWWmqMpZYaY6mlxrhN1NxRzTq2XLeJ7sWYNkiOLXdMs44t122ikuZmqaXGWGqpMZZaaoyllhpjqaXGdN0muna6SfSeJJcNPZSk2XVZZ3QS8AHgdOBNwLuSvGHowSTNpss99e8AG6rqv6rqBeA7wB8OO5akWXUp9RbgbUmOSLISeAdw7Muv5DZRaXHY5+aTqtqa5B+AW4Gngc3Ai3u43jqma45endf0/9xTSZ10OlFWVVdU1e9W1VnAL4EfDTuWpFl12lGW5HVVtTPJbzJ5PH3GsGNJmlWnUgNfS3IE8Dzwwar61YAzSZpD122ibxt6EEn98BllUmMstdQYSy01xlJLjbHUUmMG2SYK/Anwnx3+ypHAzzvGHwp0Xcto7rhmHVvuYpj1jVV16B6/U1UL9gFs3I/rrjO3e+6YZh1b7mKfdUyH3/9s7mC5Y5p1bLkHfNbRlLqqBvnHMXdcs44tdyFmXehSD/Xm9eaOa9ax5S7qWQd5hw5JC2eh76kl9cxSS41ZsFInOT/JD5Pcn+STPWVemWRnki195E0zj01ye5J7p9tU1/aUuyLJ95LcPc39TB+5u+UvSXJXkpt6zHw4yQ+SbE6ysafMw5KsT3Jfkq1J3txD5gnTGXd9PNHXFtwkH5n+f21Jcm2SFT3l9rext+vvxfr8AJYADwC/DSwH7gZO7CH3LOBUYEuPsx4NnDq9fAiTrS99zBrg4OnlZcAG4Iwe5/4ocA1wU4+ZDwNH9vyzcBXwZ9PLy4HDBvhZ+ynwWz1kHQM8BBw0/fx64H095J7EZBfgSiYvh/4X4A2z5i3UPfXpwP1V9WBVPQdcB7xn3tCqugP4xbw5L8vcUVWbppefBLYy+c+dN7eq6qnpp8umH72ctUyyGngncHkfeUNJciiTG+IrAKrquep/Acc5wANV9eOe8pYCByVZyqSEP+khs9eNvQtV6mOAR3f7fBs9FGVoSY4DTmFyr9pH3pIkm4GdwG1V1Usu8AXgE8Cve8rbpYBbk9yZZE0PeccDjwFfnj5UuDzJqh5yd3cRcG0fQVW1Hfgc8AiwA3i8qm7tIbrTxt6uPFHWUZKDga8Bl1XVE31kVtWLVXUysBo4ffrGCXNJ8i5gZ1XdOfeA/9dbq+pU4ALgg0nOmjNvKZOHS1+qqlOYbKvt5fwKQJLlwIXAV3vKO5zJEeXxwOuBVUkumTe3qrYCuzb23sIrbOztaqFKvZ2X3hKtnn5tUUqyjEmhr66qG/rOnx5y3g6c30PcmcCFSR5m8rDm7CRf6SF31z0VVbUTuJHJw6h5bAO27XaEsp5JyftyAbCpqn7WU97bgYeq6rGqeh64AXhLH8HV48behSr194E3Jjl+emt6EfD1BZplr5KEyWO+rVX1+R5zX5vksOnlg4Bzgfvmza2qT1XV6qo6jsm/67eqau57kySrkhyy6zJwHpPDxnlm/SnwaJITpl86B7h3rkFf6mJ6OvSeegQ4I8nK6c/FOUzOscwtyeumf+7a2HvNrFldt4n2qqpeSPIh4JtMzk5eWVX3zJub5Frg94Ejk2wDPl1VV8wZeybwXuAH08e/AH9VVTfPmXs0cFWSJUxuXK+vqt5+/TSAo4AbJz/LLAWuqapbesj9MHD19Mb9QeDSHjJ33fCcC/x5H3kAVbUhyXpgE/ACcBf9PWW0t429Pk1UaownyqTGWGqpMZZaaoyllhpjqaXGWGqpMZZaasz/AKlGbUA+kPk+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "code", "metadata": { - "id": "kExc-22eg-MA" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "kExc-22eg-MA", + "outputId": "9510a043-a775-4afc-b790-d24fee5b6608" }, "source": [ "# 4 layers Gated PixelCNN\n", @@ -694,12 +878,30 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOVElEQVR4nO3db4yV5Z3G8e+1Azj8K1BRQhl3ZVND1pBUXcLa2pJdqV1orSbNpoupTWrasi/aLra6jd19Yfpm/6RN077YNCFq16SKsSiJNdbitnZJk11aQKwDg11FKlAUjVbEtfKnv31xntkgOzD3nHPfzHnuXp9kwpmZw5VfYK5znvPMOb+jiMDM6vEHkz2AmeXlUptVxqU2q4xLbVYZl9qsMlNKhE7TeTHIzKyZcxfO5sILXsyaCXD0t/OZNfjy73Vum2ZtW26pWfftP87Lr5zUWN8rUupBZvJnWpk18+O3rObTn/inrJkAW4bXsWLpt36vc9s0a9tyS826/C/3n/F7Pvw2q4xLbVYZl9qsMi61WWVcarPKuNRmlUkqtaRVkp6W9Iyk20oPZWbdG7fUkgaAfwVWA5cCN0i6tPRgZtadlHvq5cAzEbE3Io4B9wHXlx3LzLqVUupFwKlPXznQfO1tJK2VtE3StuO8lWs+M5ugbCfKImJ9RCyLiGVTOS9XrJlNUEqpDwIXnfL5UPM1M+tDKaX+OXCJpMWSpgFrgIfKjmVm3Rr3VVoRcULS54EfAgPAXRGxq/hkZtaVpJdeRsQjwCOFZzGzDPyMMrPKuNRmlXGpzSrjUptVxqU2q4xyvpeWpI8CH50/74LP/uM//HO2XIB5Q3OYf/6hrJkAR99cwKzpBbaUtii3TbO2LbfUrLfecivbnvztmNtEs5Z61Dv0zsi+TfRr3iZaKrdNs7Ytt+Q20TOV2offZpVxqc0q41KbVcalNquMS21WGZfarDIpiwfvknRY0vC5GMjMepNyT/1vwKrCc5hZJuOWOiK2AK+cg1nMLINs708taS2wFmCQGblizWyCvE3UrDI++21WGZfarDIpv9LaAPwnsETSAUmfLj+WmXUrZUXwDediEDPLw4ffZpVxqc0q41KbVcalNquMS21WGW8TbdFmylK5bZq1bbneJnoW3iZaLrdNs7Yt19tEzaxnLrVZZVxqs8q41GaVcanNKuNSm1Um5aWXF0l6XNJuSbskrTsXg5lZd1J2lJ0AbomIHZJmA9slPRYRuwvPZmZdSNkmeigidjSXXwdGgEWlBzOz7kxom6iki4HLga1jfM/bRM36QPKJMkmzgAeAmyPiyOnf9zZRs/6QVGpJU+kU+p6IeLDsSGbWi5Sz3wLuBEYi4hvlRzKzXqTcU18FfBK4WtLO5uPDhecysy6lbBP9KTDmS7zMrP/4GWVmlXGpzSrjUptVxqU2q4xLbVYZbxNt0WbKUrltmrVtud4mehbeJlout02zti3X20TNrGcutVllXGqzyrjUZpVxqc0qk/LSy0FJP5P0ZLN48KvnYjAz607KOqO3gKsj4mizLOGnkn4QEf9VeDYz60LKSy8DONp8OrX5yP/LbTPLInWd0YCkncBh4LGIGHPxoKRtkrYd563cc5pZoqRSR8TJiLgMGAKWS1o6xnW8eNCsD0zo7HdE/AZ4HFhVZhwz61XK2e8LJM1tLk8HrgH2lB7MzLqTcvZ7IXC3pAE6NwL3R8TDZccys26lnP3+BZ135TCzFvAzyswq41KbVcalNquMS21WGZfarDJePNiiJXalcts0a9tyvXjwLLx4sFxum2ZtW64XD5pZz1xqs8q41GaVcanNKuNSm1XGpTarTHKpm5VGT0jyyy7N+thE7qnXASOlBjGzPFIXDw4BHwHuKDuOmfUq9Z76m8CXgd+d6QreJmrWH1J2lF0LHI6I7We7nreJmvWHlHvqq4DrJO0D7gOulvTdolOZWdfGLXVEfCUihiLiYmAN8OOIuLH4ZGbWFf+e2qwyKSuC/09E/AT4SZFJzCwL31ObVcalNquMS21WGZfarDIutVllvE20RZspS+UefXMBz715xmcAd23B1Gm8tvfV7Lnzhubw6oHXWpFbatZbbr2VI/GKt4mOpU2bKUvlbhlex0278j9f/0sLh3hozcbsuR//2mru/7sftCK31Kxb40dnLLUPv80q41KbVcalNquMS21WGZfarDIutVllkl6l1SxIeB04CZyIiGUlhzKz7k3kpZd/EREvF5vEzLLw4bdZZVJLHcBmSdslrR3rCt4matYfUg+/3x8RByVdCDwmaU9EbDn1ChGxHlgPnaeJZp7TzBIl3VNHxMHmz8PAJmB5yaHMrHspe79nSpo9ehn4EDBcejAz607K4fcCYJOk0evfGxGPFp3KzLo2bqkjYi/wnnMwi5ll4F9pmVXGpTarjEttVhmX2qwyLrVZZVq1TbQtGyTbltumWduW622iZ9GmDZJty23TrG3L9TZRM+uZS21WGZfarDIutVllXGqzyrjUZpVJKrWkuZI2StojaUTSe0sPZmbdSV1n9C3g0Yj4K0nTgBkFZzKzHoxbaklzgBXApwAi4hhwrOxYZtatlMPvxcBLwHckPSHpjmat0dt4m6hZf0gp9RTgCuDbEXE58AZw2+lXioj1EbEsIpZN5bzMY5pZqpRSHwAORMTW5vONdEpuZn1o3FJHxAvAfklLmi+tBHYXncrMupZ69vsLwD3Nme+9wE3lRjKzXiSVOiJ2An6nS7MW8DPKzCrjUptVxqU2q4xLbVYZl9qsMt4m6txWzdq2XG8TPYs2bZBsW26bZm1brreJmlnPXGqzyrjUZpVxqc0q41KbVWbcUktaImnnKR9HJN18LoYzs4kb91VaEfE0cBmApAHgILCp8Fxm1qWJHn6vBJ6NiF+VGMbMepe6JGHUGmDDWN+QtBZYCzDoDcJmkyb5nrrZenId8L2xvu/Fg2b9YSKH36uBHRHxYqlhzKx3Eyn1DZzh0NvM+kfqe2nNBK4BHiw7jpn1KnXx4BvA+YVnMbMM/Iwys8q41GaVcanNKuNSm1XGpTarjBcPOrdVs7Yt14sHz6JNy+baltumWduW68WDZtYzl9qsMi61WWVcarPKuNRmlXGpzSqT+tLLL0raJWlY0gZJg6UHM7PupKwIXgT8LbAsIpYCA3R2lZlZH0o9/J4CTJc0BZgB/LrcSGbWi3FLHREHga8DzwOHgNciYvPp15O0VtI2SduO81b+Sc0sScrh9zzgemAx8C5gpqQbT7+et4ma9YeUw+8PAs9FxEsRcZzOnrL3lR3LzLqVUurngSslzZAkOu/SMVJ2LDPrVspj6q3ARmAH8FTzd9YXnsvMupS6TfR24PbCs5hZBn5GmVllXGqzyrjUZpVxqc0q41KbVcbbRJ3bqlnbluttomfRpg2Sbctt06xty/U2UTPrmUttVhmX2qwyLrVZZVxqs8q41GaVSd0muq7ZJLpL0s2lhzKz7qWsM1oKfBZYDrwHuFbSu0sPZmbdSbmn/hNga0T8T0ScAP4D+FjZscysWymlHgY+IOl8STOADwMXnX4lbxM16w/jbj6JiBFJ/wJsBt4AdgInx7jeepo1R+/QO/M/99TMkiSdKIuIOyPiTyNiBfAq8MuyY5lZt5J2lEm6MCIOS/pDOo+nryw7lpl1K6nUwAOSzgeOA5+LiN8UnMnMepC6TfQDpQcxszz8jDKzyrjUZpVxqc0q41KbVcalNqtMkW2iwF8D/53wV+YDLyfGzwFS1zI6t12zti23H2a9JCLmjPmdiJi0D2DbBK673rnpuW2atW25/T5rmw6/v+/cYrltmrVtued81taUOiKK/OM4t12zti13Mmad7FKXevN657Zr1rbl9vWsRd6hw8wmz2TfU5tZZi61WWUmrdSSVkl6WtIzkm7LlHmXpMOShnPkNZkXSXpc0u5mm+q6TLmDkn4m6ckm96s5ck/JH5D0hKSHM2buk/SUpJ2StmXKnCtpo6Q9kkYkvTdD5pJmxtGPI7m24Er6YvP/NSxpg6TBTLn5Nvam/l4s5wcwADwL/DEwDXgSuDRD7grgCmA446wLgSuay7PpbH3JMauAWc3lqcBW4MqMc38JuBd4OGPmPmB+5p+Fu4HPNJenAXML/Ky9APxRhqxFwHPA9Obz+4FPZchdSmcX4Aw6L4f+d+Dd3eZN1j31cuCZiNgbEceA+4Drew2NiC3AK73mnJZ5KCJ2NJdfB0bo/Of2mhsRcbT5dGrzkeWspaQh4CPAHTnySpE0h84N8Z0AEXEs8i/gWAk8GxG/ypQ3BZguaQqdEv46Q2bWjb2TVepFwP5TPj9AhqKUJuli4HI696o58gYk7QQOA49FRJZc4JvAl4HfZcobFcBmSdslrc2Qtxh4CfhO81DhDkkzM+Seag2wIUdQRBwEvg48DxwCXouIzRmikzb2pvKJskSSZgEPADdHxJEcmRFxMiIuA4aA5c0bJ/RE0rXA4YjY3vOA/9/7I+IKYDXwOUkresybQufh0rcj4nI622qznF8BkDQNuA74Xqa8eXSOKBcD7wJmSrqx19yIGAFGN/Y+yhk29qaarFIf5O23REPN1/qSpKl0Cn1PRDyYO7855HwcWJUh7irgOkn76DysuVrSdzPkjt5TERGHgU10Hkb14gBw4JQjlI10Sp7LamBHRLyYKe+DwHMR8VJEHAceBN6XIzgybuydrFL/HLhE0uLm1nQN8NAkzXJWkkTnMd9IRHwjY+4FkuY2l6cD1wB7es2NiK9ExFBEXEzn3/XHEdHzvYmkmZJmj14GPkTnsLGXWV8A9kta0nxpJbC7p0Hf7gYyHXo3ngeulDSj+blYSeccS88kXdj8Obqx995us1K3iWYVESckfR74IZ2zk3dFxK5ecyVtAP4cmC/pAHB7RNzZY+xVwCeBp5rHvwB/HxGP9Ji7ELhb0gCdG9f7IyLbr58KWABs6vwsMwW4NyIezZD7BeCe5sZ9L3BThszRG55rgL/JkQcQEVslbQR2ACeAJ8j3lNFsG3v9NFGzyvhEmVllXGqzyrjUZpVxqc0q41KbVcalNquMS21Wmf8FgMVbSvHwSOgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "code", "metadata": { - "id": "wHImyVeXhBUT" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "wHImyVeXhBUT", + "outputId": "b6ff01ed-5da3-4108-b43d-ac7075ffc57b" }, "source": [ "# 5 layers Gated PixelCNN\n", @@ -714,7 +916,20 @@ "plot_receptive_field(model, data)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOH0lEQVR4nO3da6xldX3G8e/TmaHDTe4QZGihkZAaEoFOpihKWhALipA0TQuJJpoW+kItqNRg+8L6pmlTY/RFYzIBLAm34ACJGuTSiiUm7egwDHVgsOUmzAgMFAWxKBd/fbH3NAOdy5q915pz1j/fT3Iy+5yz58kvM+fZe+119v7tVBWS2vFrCz2ApH5ZaqkxllpqjKWWGmOppcYsHSL08EOX1HHHLus186VfHM4By5/rNdPc4TLNHS4T4PEnX+W551/Pjr43SKmPO3YZ37vj2F4z79l4KWec9OVeM80dLtPc4TIBVv3Bkzv9noffUmMstdQYSy01xlJLjbHUUmMstdSYTqVOck6SHyZ5OMkVQw8laXa7LXWSJcA/AucCbwcuSvL2oQeTNJsu99SrgIer6tGqegW4Ebhg2LEkzapLqY8Btn/6yubp194gySVJ1iVZ9+x/v97XfJL2UG8nyqpqdVWtrKqVRxy2pK9YSXuoS6m3ANs/kXvF9GuSFqEupf4+cEKS45PsA1wIfH3YsSTNarev0qqq15J8HLgDWAJcXVUPDD6ZpJl0eullVd0G3DbwLJJ64DPKpMZYaqkxllpqjKWWGmOppcakz/fSSvJB4IPHvPWwi6+95m96ywV46eWjOGDfZ3rNNHe4THOHywS4/NOXs+7+X+xwm2ivpd5m5TuWl9tEx5M7plnHljvkNtGdldrDb6kxllpqjKWWGmOppcZYaqkxllpqTJfFg1cn2Zpk494YSNJ8utxT/xNwzsBzSOrJbktdVfcAz++FWST1oLfH1G4TlRYHt4lKjfHst9QYSy01psuvtG4A/g04McnmJH86/FiSZtVlRfBFe2MQSf3w8FtqjKWWGmOppcZYaqkxllpqjNtEzR3VrGPLdZvoLoxpg+TYcsc069hy3SYqaW6WWmqMpZYaY6mlxlhqqTGWWmpMl5deHpvk7iQPJnkgyaV7YzBJs9ntSy+B14BPV9X6JAcC9ya5q6oeHHg2STPosk30qapaP738M2ATcMzQg0mazR49pk5yHHAKsHYH33ObqLQIdC51kgOAm4HLqurFN3/fbaLS4tCp1EmWMSn0dVV1y7AjSZpHl7PfAa4CNlXVF4cfSdI8utxTnw58GDgzyYbpx/sHnkvSjLpsE/0usMOXeElafHxGmdQYSy01xlJLjbHUUmMstdQYt4maO6pZx5brNtFdGNMGybHljmnWseW6TVTS3Cy11BhLLTXGUkuNsdRSY7q89HJ5ku8luX+6ePDze2MwSbPpsnjwl8CZVfXSdFnCd5N8q6r+feDZJM2gy0svC3hp+umy6Uf/v9yW1Iuu64yWJNkAbAXuqioXD0qLVKdSV9XrVXUysAJYleSkHVzHxYPSIrBHZ7+r6qfA3cA5w4wjaV5dzn4fkeTg6eV9gbOBh4YeTNJsupz9Phq4JskSJjcCN1XVN4cdS9Ksupz9/g8m78ohaQR8RpnUGEstNcZSS42x1FJjLLXUGBcPmjuqWceW6+LBXRjTsrmx5Y5p1rHlunhQ0twstdQYSy01xlJLjbHUUmMstdSYzqWerjS6L4kvu5QWsT25p74U2DTUIJL60XXx4ArgA8CVw44jaV5d76m/BHwG+NXOruA2UWlx6LKj7Dxga1Xdu6vruU1UWhy63FOfDpyf5HHgRuDMJNcOOpWkme221FX12apaUVXHARcC366qDw0+maSZ+HtqqTFdVgT/n6r6DvCdQSaR1AvvqaXGWGqpMZZaaoyllhpjqaXGuE3UXF56+Sgee3mnzwCe2VHL9uGFR3/Se+4hKw7iJ5tfGEXuULN++vLLebGed5uouTvP/OgDv+w1E+BTR6/g6xeu6T33j//hXG76y2+NIneoWdfWv+y01B5+S42x1FJjLLXUGEstNcZSS42x1FJjOr1Ka7og4WfA68BrVbVyyKEkzW5PXnr5+1X13GCTSOqFh99SY7qWuoA7k9yb5JIdXcFtotLi0PXw+91VtSXJkcBdSR6qqnu2v0JVrQZWw+Rpoj3PKamjTvfUVbVl+udW4FZg1ZBDSZpdl73f+yc5cNtl4H3AxqEHkzSbLoffRwG3Jtl2/eur6vZBp5I0s92WuqoeBd6xF2aR1AN/pSU1xlJLjbHUUmMstdQYSy01ZpBtoocfcsTFf/vXf9dbLoxrg+TYcsc069hym9km+pYcWr+bs3rNHNMGybHljmnWseW6TVTS3Cy11BhLLTXGUkuNsdRSYyy11JhOpU5ycJI1SR5KsinJO4ceTNJsuq4z+jJwe1X9UZJ9gP0GnEnSHHZb6iQHAWcAHwGoqleAV4YdS9Ksuhx+Hw88C3w1yX1JrpyuNXqD7beJvkr/73UsqZsupV4KnAp8papOAX4OXPHmK1XV6qpaWVUrl/HrPY8pqasupd4MbK6qtdPP1zApuaRFaLelrqqngSeTnDj90lnAg4NOJWlmXc9+fwK4bnrm+1Hgo8ONJGkenUpdVRsA3+lSGgGfUSY1xlJLjbHUUmMstdQYSy01xm2i5o5q1rHluk10F8a0QXJsuWOadWy5bhOVNDdLLTXGUkuNsdRSYyy11JjdljrJiUk2bPfxYpLL9sZwkvbcbl+lVVU/BE4GSLIE2ALcOvBckma0p4ffZwGPVNWPhhhG0vy6LknY5kLghh19I8klwCUAy90gLC2YzvfU060n5wNf29H3XTwoLQ57cvh9LrC+qp4ZahhJ89uTUl/ETg69JS0eXd9La3/gbOCWYceRNK+uiwd/Dhw28CySeuAzyqTGWGqpMZZaaoyllhpjqaXGuHjQ3FHNOrZcFw/uwpiWzY0td0yzji3XxYOS5mappcZYaqkxllpqjKWWGmOppcZ0fenlJ5M8kGRjkhuSLB96MEmz6bIi+BjgL4CVVXUSsITJrjJJi1DXw++lwL5JlgL7AT8ebiRJ89htqatqC/AF4AngKeCFqrrzzddLckmSdUnWvcov+59UUiddDr8PAS4AjgfeCuyf5ENvvp7bRKXFocvh93uBx6rq2ap6lcmesncNO5akWXUp9RPAaUn2SxIm79KxadixJM2qy2PqtcAaYD3wg+nfWT3wXJJm1HWb6OeAzw08i6Qe+IwyqTGWWmqMpZYaY6mlxlhqqTFuEzV3VLOOLddtorswpg2SY8sd06xjy3WbqKS5WWqpMZZaaoyllhpjqaXGWGqpMV23iV463ST6QJLLhh5K0uy6rDM6CbgYWAW8AzgvyduGHkzSbLrcU/82sLaq/qeqXgP+FfjDYceSNKsupd4IvCfJYUn2A94PHPvmK7lNVFocdrv5pKo2Jfl74E7g58AG4PUdXG810zVHb8mh/T/3VFInnU6UVdVVVfU7VXUG8BPgP4cdS9KsOu0oS3JkVW1N8htMHk+fNuxYkmbVqdTAzUkOA14FPlZVPx1wJklz6LpN9D1DDyKpHz6jTGqMpZYaY6mlxlhqqTGWWmrMINtEgT8B/qvDXzkceK5j/EFA17WM5o5r1rHlLoZZT6iqg3b4napasA9g3R5cd7W53XPHNOvYchf7rGM6/P6GuYPljmnWseXu9VlHU+qqGuQfx9xxzTq23IWYdaFLPdSb15s7rlnHlruoZx3kHTokLZyFvqeW1DNLLTVmwUqd5JwkP0zycJIresq8OsnWJBv7yJtmHpvk7iQPTrepXtpT7vIk30ty/zT3833kbpe/JMl9Sb7ZY+bjSX6QZEOSdT1lHpxkTZKHkmxK8s4eMk+czrjt48W+tuAm+eT0/2tjkhuSLO8pt7+NvV1/L9bnB7AEeAT4LWAf4H7g7T3kngGcCmzscdajgVOnlw9ksvWlj1kDHDC9vAxYC5zW49yfAq4Hvtlj5uPA4T3/LFwD/Nn08j7AwQP8rD0N/GYPWccAjwH7Tj+/CfhID7knMdkFuB+Tl0P/M/C2WfMW6p56FfBwVT1aVa8ANwIXzBtaVfcAz8+b86bMp6pq/fTyz4BNTP5z582tqnpp+umy6UcvZy2TrAA+AFzZR95QkhzE5Ib4KoCqeqX6X8BxFvBIVf2op7ylwL5JljIp4Y97yOx1Y+9ClfoY4MntPt9MD0UZWpLjgFOY3Kv2kbckyQZgK3BXVfWSC3wJ+Azwq57ytingziT3Jrmkh7zjgWeBr04fKlyZZP8ecrd3IXBDH0FVtQX4AvAE8BTwQlXd2UN0p429XXmirKMkBwA3A5dV1Yt9ZFbV61V1MrACWDV944S5JDkP2FpV98494P/37qo6FTgX+FiSM+bMW8rk4dJXquoUJttqezm/ApBkH+B84Gs95R3C5IjyeOCtwP5JPjRvblVtArZt7L2dnWzs7WqhSr2FN94SrZh+bVFKsoxJoa+rqlv6zp8ect4NnNND3OnA+UkeZ/Kw5swk1/aQu+2eiqraCtzK5GHUPDYDm7c7QlnDpOR9ORdYX1XP9JT3XuCxqnq2ql4FbgHe1Udw9bixd6FK/X3ghCTHT29NLwS+vkCz7FKSMHnMt6mqvthj7hFJDp5e3hc4G3ho3tyq+mxVraiq45j8u367qua+N0myf5IDt10G3sfksHGeWZ8Gnkxy4vRLZwEPzjXoG11ET4feU08ApyXZb/pzcRaTcyxzS3Lk9M9tG3uvnzWr6zbRXlXVa0k+DtzB5Ozk1VX1wLy5SW4Afg84PMlm4HNVddWcsacDHwZ+MH38C/BXVXXbnLlHA9ckWcLkxvWmqurt108DOAq4dfKzzFLg+qq6vYfcTwDXTW/cHwU+2kPmthues4E/7yMPoKrWJlkDrAdeA+6jv6eM9rax16eJSo3xRJnUGEstNcZSS42x1FJjLLXUGEstNcZSS435X6ZMf6JHvKMCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] }, { "cell_type": "markdown", @@ -756,7 +971,11 @@ { "cell_type": "code", "metadata": { - "id": "Yf6g0Mqnh2JU" + "id": "Yf6g0Mqnh2JU", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a88d2066-a0d5-48b1-a116-475d96e813d0" }, "source": [ "# Loading data\n", @@ -773,7 +992,17 @@ "x_test = x_test.reshape(x_test.shape[0], height, width, n_channel)" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n", + "11493376/11490434 [==============================] - 0s 0us/step\n", + "11501568/11490434 [==============================] - 0s 0us/step\n" + ] + } + ] }, { "cell_type": "markdown", @@ -946,24 +1175,646 @@ { "cell_type": "code", "metadata": { - "id": "9-D01ij3i2q2" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9-D01ij3i2q2", + "outputId": "17e67af1-45bd-44a7-acf9-8c264bfd8a86" }, "source": [ "# Training loop\n", - "n_epochs = 1\n", + "n_epochs = 100\n", "n_iter = int(np.ceil(x_train_quantised.shape[0] / batch_size))\n", "for epoch in range(n_epochs):\n", " progbar = Progbar(n_iter)\n", " print('Epoch {:}/{:}'.format(epoch + 1, n_epochs))\n", "\n", + " start_epoch = time.time()\n", " for i_iter, (batch_x, batch_y) in enumerate(train_dataset):\n", + " start = time.time()\n", + " epoch_time = time.time() - start_epoch\n", " optimizer.lr = optimizer.lr * lr_decay\n", " loss = train_step(batch_x, batch_y)\n", "\n", - " progbar.add(1, values=[('loss', loss)])" + " iter_time = time.time() - start\n", + " if i_iter % 100 == 0:\n", + " print('EPOCH {:3d}: ITER {:4d}/{:4d} TIME: {:.2f} LOSS: {:.4f}'.format(epoch,\n", + " i_iter, n_iter,\n", + " iter_time,\n", + " loss))\n", + " print('EPOCH {:3d}: TIME: {:.2f} ETA: {:.2f}'.format(epoch,\n", + " epoch_time,\n", + " epoch_time * (n_epochs - epoch)))" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "EPOCH 0: ITER 0/ 313 TIME: 1.96 LOSS: 0.6935\n", + "EPOCH 0: ITER 100/ 313 TIME: 0.23 LOSS: 0.1087\n", + "EPOCH 0: ITER 200/ 313 TIME: 0.23 LOSS: 0.1002\n", + "EPOCH 0: ITER 300/ 313 TIME: 0.23 LOSS: 0.0938\n", + "EPOCH 0: TIME: 73.04 ETA: 7304.36\n", + "Epoch 2/100\n", + "EPOCH 1: ITER 0/ 313 TIME: 0.01 LOSS: 0.0959\n", + "EPOCH 1: ITER 100/ 313 TIME: 0.23 LOSS: 0.0955\n", + "EPOCH 1: ITER 200/ 313 TIME: 0.22 LOSS: 0.0909\n", + "EPOCH 1: ITER 300/ 313 TIME: 0.23 LOSS: 0.0906\n", + "EPOCH 1: TIME: 71.52 ETA: 7080.22\n", + "Epoch 3/100\n", + "EPOCH 2: ITER 0/ 313 TIME: 0.01 LOSS: 0.0876\n", + "EPOCH 2: ITER 100/ 313 TIME: 0.23 LOSS: 0.0892\n", + "EPOCH 2: ITER 200/ 313 TIME: 0.23 LOSS: 0.0896\n", + "EPOCH 2: ITER 300/ 313 TIME: 0.22 LOSS: 0.0843\n", + "EPOCH 2: TIME: 71.80 ETA: 7036.33\n", + "Epoch 4/100\n", + "EPOCH 3: ITER 0/ 313 TIME: 0.01 LOSS: 0.0861\n", + "EPOCH 3: ITER 100/ 313 TIME: 0.23 LOSS: 0.0870\n", + "EPOCH 3: ITER 200/ 313 TIME: 0.22 LOSS: 0.0874\n", + "EPOCH 3: ITER 300/ 313 TIME: 0.23 LOSS: 0.0870\n", + "EPOCH 3: TIME: 71.83 ETA: 6967.87\n", + "Epoch 5/100\n", + "EPOCH 4: ITER 0/ 313 TIME: 0.01 LOSS: 0.0851\n", + "EPOCH 4: ITER 100/ 313 TIME: 0.23 LOSS: 0.0841\n", + "EPOCH 4: ITER 200/ 313 TIME: 0.23 LOSS: 0.0838\n", + "EPOCH 4: ITER 300/ 313 TIME: 0.23 LOSS: 0.0848\n", + "EPOCH 4: TIME: 71.82 ETA: 6894.81\n", + "Epoch 6/100\n", + "EPOCH 5: ITER 0/ 313 TIME: 0.02 LOSS: 0.0845\n", + "EPOCH 5: ITER 100/ 313 TIME: 0.23 LOSS: 0.0839\n", + "EPOCH 5: ITER 200/ 313 TIME: 0.23 LOSS: 0.0840\n", + "EPOCH 5: ITER 300/ 313 TIME: 0.22 LOSS: 0.0840\n", + "EPOCH 5: TIME: 71.86 ETA: 6826.89\n", + "Epoch 7/100\n", + "EPOCH 6: ITER 0/ 313 TIME: 0.02 LOSS: 0.0834\n", + "EPOCH 6: ITER 100/ 313 TIME: 0.23 LOSS: 0.0820\n", + "EPOCH 6: ITER 200/ 313 TIME: 0.23 LOSS: 0.0820\n", + "EPOCH 6: ITER 300/ 313 TIME: 0.23 LOSS: 0.0854\n", + "EPOCH 6: TIME: 71.88 ETA: 6756.76\n", + "Epoch 8/100\n", + "EPOCH 7: ITER 0/ 313 TIME: 0.01 LOSS: 0.0844\n", + "EPOCH 7: ITER 100/ 313 TIME: 0.23 LOSS: 0.0837\n", + "EPOCH 7: ITER 200/ 313 TIME: 0.23 LOSS: 0.0831\n", + "EPOCH 7: ITER 300/ 313 TIME: 0.23 LOSS: 0.0827\n", + "EPOCH 7: TIME: 71.84 ETA: 6680.99\n", + "Epoch 9/100\n", + "EPOCH 8: ITER 0/ 313 TIME: 0.01 LOSS: 0.0849\n", + "EPOCH 8: ITER 100/ 313 TIME: 0.22 LOSS: 0.0820\n", + "EPOCH 8: ITER 200/ 313 TIME: 0.23 LOSS: 0.0814\n", + "EPOCH 8: ITER 300/ 313 TIME: 0.23 LOSS: 0.0820\n", + "EPOCH 8: TIME: 71.86 ETA: 6611.41\n", + "Epoch 10/100\n", + "EPOCH 9: ITER 0/ 313 TIME: 0.01 LOSS: 0.0848\n", + "EPOCH 9: ITER 100/ 313 TIME: 0.23 LOSS: 0.0837\n", + "EPOCH 9: ITER 200/ 313 TIME: 0.23 LOSS: 0.0830\n", + "EPOCH 9: ITER 300/ 313 TIME: 0.23 LOSS: 0.0833\n", + "EPOCH 9: TIME: 71.89 ETA: 6541.66\n", + "Epoch 11/100\n", + "EPOCH 10: ITER 0/ 313 TIME: 0.01 LOSS: 0.0819\n", + "EPOCH 10: ITER 100/ 313 TIME: 0.23 LOSS: 0.0815\n", + "EPOCH 10: ITER 200/ 313 TIME: 0.23 LOSS: 0.0804\n", + "EPOCH 10: ITER 300/ 313 TIME: 0.23 LOSS: 0.0834\n", + "EPOCH 10: TIME: 71.90 ETA: 6470.99\n", + "Epoch 12/100\n", + "EPOCH 11: ITER 0/ 313 TIME: 0.01 LOSS: 0.0852\n", + "EPOCH 11: ITER 100/ 313 TIME: 0.23 LOSS: 0.0813\n", + "EPOCH 11: ITER 200/ 313 TIME: 0.22 LOSS: 0.0816\n", + "EPOCH 11: ITER 300/ 313 TIME: 0.22 LOSS: 0.0832\n", + "EPOCH 11: TIME: 71.92 ETA: 6400.92\n", + "Epoch 13/100\n", + "EPOCH 12: ITER 0/ 313 TIME: 0.01 LOSS: 0.0818\n", + "EPOCH 12: ITER 100/ 313 TIME: 0.23 LOSS: 0.0827\n", + "EPOCH 12: ITER 200/ 313 TIME: 0.23 LOSS: 0.0809\n", + "EPOCH 12: ITER 300/ 313 TIME: 0.24 LOSS: 0.0819\n", + "EPOCH 12: TIME: 71.94 ETA: 6330.71\n", + "Epoch 14/100\n", + "EPOCH 13: ITER 0/ 313 TIME: 0.02 LOSS: 0.0795\n", + "EPOCH 13: ITER 100/ 313 TIME: 0.23 LOSS: 0.0841\n", + "EPOCH 13: ITER 200/ 313 TIME: 0.23 LOSS: 0.0803\n", + "EPOCH 13: ITER 300/ 313 TIME: 0.24 LOSS: 0.0814\n", + "EPOCH 13: TIME: 71.94 ETA: 6259.08\n", + "Epoch 15/100\n", + "EPOCH 14: ITER 0/ 313 TIME: 0.01 LOSS: 0.0800\n", + "EPOCH 14: ITER 100/ 313 TIME: 0.23 LOSS: 0.0796\n", + "EPOCH 14: ITER 200/ 313 TIME: 0.23 LOSS: 0.0814\n", + "EPOCH 14: ITER 300/ 313 TIME: 0.22 LOSS: 0.0811\n", + "EPOCH 14: TIME: 71.93 ETA: 6185.70\n", + "Epoch 16/100\n", + "EPOCH 15: ITER 0/ 313 TIME: 0.01 LOSS: 0.0806\n", + "EPOCH 15: ITER 100/ 313 TIME: 0.22 LOSS: 0.0819\n", + "EPOCH 15: ITER 200/ 313 TIME: 0.23 LOSS: 0.0794\n", + "EPOCH 15: ITER 300/ 313 TIME: 0.22 LOSS: 0.0815\n", + "EPOCH 15: TIME: 72.00 ETA: 6119.93\n", + "Epoch 17/100\n", + "EPOCH 16: ITER 0/ 313 TIME: 0.01 LOSS: 0.0829\n", + "EPOCH 16: ITER 100/ 313 TIME: 0.22 LOSS: 0.0835\n", + "EPOCH 16: ITER 200/ 313 TIME: 0.23 LOSS: 0.0788\n", + "EPOCH 16: ITER 300/ 313 TIME: 0.23 LOSS: 0.0810\n", + "EPOCH 16: TIME: 71.98 ETA: 6046.57\n", + "Epoch 18/100\n", + "EPOCH 17: ITER 0/ 313 TIME: 0.02 LOSS: 0.0803\n", + "EPOCH 17: ITER 100/ 313 TIME: 0.23 LOSS: 0.0792\n", + "EPOCH 17: ITER 200/ 313 TIME: 0.22 LOSS: 0.0829\n", + "EPOCH 17: ITER 300/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 17: TIME: 72.03 ETA: 5978.30\n", + "Epoch 19/100\n", + "EPOCH 18: ITER 0/ 313 TIME: 0.01 LOSS: 0.0798\n", + "EPOCH 18: ITER 100/ 313 TIME: 0.23 LOSS: 0.0816\n", + "EPOCH 18: ITER 200/ 313 TIME: 0.23 LOSS: 0.0806\n", + "EPOCH 18: ITER 300/ 313 TIME: 0.24 LOSS: 0.0819\n", + "EPOCH 18: TIME: 71.98 ETA: 5901.95\n", + "Epoch 20/100\n", + "EPOCH 19: ITER 0/ 313 TIME: 0.01 LOSS: 0.0814\n", + "EPOCH 19: ITER 100/ 313 TIME: 0.23 LOSS: 0.0786\n", + "EPOCH 19: ITER 200/ 313 TIME: 0.24 LOSS: 0.0806\n", + "EPOCH 19: ITER 300/ 313 TIME: 0.23 LOSS: 0.0790\n", + "EPOCH 19: TIME: 71.94 ETA: 5827.09\n", + "Epoch 21/100\n", + "EPOCH 20: ITER 0/ 313 TIME: 0.01 LOSS: 0.0824\n", + "EPOCH 20: ITER 100/ 313 TIME: 0.23 LOSS: 0.0777\n", + "EPOCH 20: ITER 200/ 313 TIME: 0.23 LOSS: 0.0794\n", + "EPOCH 20: ITER 300/ 313 TIME: 0.23 LOSS: 0.0826\n", + "EPOCH 20: TIME: 71.91 ETA: 5753.18\n", + "Epoch 22/100\n", + "EPOCH 21: ITER 0/ 313 TIME: 0.01 LOSS: 0.0789\n", + "EPOCH 21: ITER 100/ 313 TIME: 0.22 LOSS: 0.0790\n", + "EPOCH 21: ITER 200/ 313 TIME: 0.23 LOSS: 0.0780\n", + "EPOCH 21: ITER 300/ 313 TIME: 0.23 LOSS: 0.0808\n", + "EPOCH 21: TIME: 71.92 ETA: 5681.50\n", + "Epoch 23/100\n", + "EPOCH 22: ITER 0/ 313 TIME: 0.01 LOSS: 0.0788\n", + "EPOCH 22: ITER 100/ 313 TIME: 0.22 LOSS: 0.0786\n", + "EPOCH 22: ITER 200/ 313 TIME: 0.23 LOSS: 0.0806\n", + "EPOCH 22: ITER 300/ 313 TIME: 0.23 LOSS: 0.0804\n", + "EPOCH 22: TIME: 72.03 ETA: 5618.20\n", + "Epoch 24/100\n", + "EPOCH 23: ITER 0/ 313 TIME: 0.01 LOSS: 0.0789\n", + "EPOCH 23: ITER 100/ 313 TIME: 0.23 LOSS: 0.0811\n", + "EPOCH 23: ITER 200/ 313 TIME: 0.22 LOSS: 0.0779\n", + "EPOCH 23: ITER 300/ 313 TIME: 0.23 LOSS: 0.0794\n", + "EPOCH 23: TIME: 72.03 ETA: 5546.62\n", + "Epoch 25/100\n", + "EPOCH 24: ITER 0/ 313 TIME: 0.01 LOSS: 0.0772\n", + "EPOCH 24: ITER 100/ 313 TIME: 0.22 LOSS: 0.0775\n", + "EPOCH 24: ITER 200/ 313 TIME: 0.22 LOSS: 0.0784\n", + "EPOCH 24: ITER 300/ 313 TIME: 0.23 LOSS: 0.0786\n", + "EPOCH 24: TIME: 72.08 ETA: 5477.93\n", + "Epoch 26/100\n", + "EPOCH 25: ITER 0/ 313 TIME: 0.01 LOSS: 0.0794\n", + "EPOCH 25: ITER 100/ 313 TIME: 0.24 LOSS: 0.0797\n", + "EPOCH 25: ITER 200/ 313 TIME: 0.23 LOSS: 0.0792\n", + "EPOCH 25: ITER 300/ 313 TIME: 0.22 LOSS: 0.0780\n", + "EPOCH 25: TIME: 72.07 ETA: 5405.62\n", + "Epoch 27/100\n", + "EPOCH 26: ITER 0/ 313 TIME: 0.01 LOSS: 0.0811\n", + "EPOCH 26: ITER 100/ 313 TIME: 0.23 LOSS: 0.0785\n", + "EPOCH 26: ITER 200/ 313 TIME: 0.23 LOSS: 0.0789\n", + "EPOCH 26: ITER 300/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 26: TIME: 72.10 ETA: 5335.31\n", + "Epoch 28/100\n", + "EPOCH 27: ITER 0/ 313 TIME: 0.01 LOSS: 0.0789\n", + "EPOCH 27: ITER 100/ 313 TIME: 0.22 LOSS: 0.0793\n", + "EPOCH 27: ITER 200/ 313 TIME: 0.23 LOSS: 0.0785\n", + "EPOCH 27: ITER 300/ 313 TIME: 0.24 LOSS: 0.0809\n", + "EPOCH 27: TIME: 72.09 ETA: 5262.89\n", + "Epoch 29/100\n", + "EPOCH 28: ITER 0/ 313 TIME: 0.01 LOSS: 0.0776\n", + "EPOCH 28: ITER 100/ 313 TIME: 0.23 LOSS: 0.0750\n", + "EPOCH 28: ITER 200/ 313 TIME: 0.22 LOSS: 0.0798\n", + "EPOCH 28: ITER 300/ 313 TIME: 0.23 LOSS: 0.0773\n", + "EPOCH 28: TIME: 72.11 ETA: 5192.16\n", + "Epoch 30/100\n", + "EPOCH 29: ITER 0/ 313 TIME: 0.01 LOSS: 0.0780\n", + "EPOCH 29: ITER 100/ 313 TIME: 0.23 LOSS: 0.0789\n", + "EPOCH 29: ITER 200/ 313 TIME: 0.23 LOSS: 0.0759\n", + "EPOCH 29: ITER 300/ 313 TIME: 0.23 LOSS: 0.0766\n", + "EPOCH 29: TIME: 72.16 ETA: 5123.11\n", + "Epoch 31/100\n", + "EPOCH 30: ITER 0/ 313 TIME: 0.01 LOSS: 0.0802\n", + "EPOCH 30: ITER 100/ 313 TIME: 0.23 LOSS: 0.0791\n", + "EPOCH 30: ITER 200/ 313 TIME: 0.23 LOSS: 0.0774\n", + "EPOCH 30: ITER 300/ 313 TIME: 0.23 LOSS: 0.0782\n", + "EPOCH 30: TIME: 72.18 ETA: 5052.79\n", + "Epoch 32/100\n", + "EPOCH 31: ITER 0/ 313 TIME: 0.01 LOSS: 0.0772\n", + "EPOCH 31: ITER 100/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 31: ITER 200/ 313 TIME: 0.24 LOSS: 0.0788\n", + "EPOCH 31: ITER 300/ 313 TIME: 0.24 LOSS: 0.0785\n", + "EPOCH 31: TIME: 72.15 ETA: 4978.21\n", + "Epoch 33/100\n", + "EPOCH 32: ITER 0/ 313 TIME: 0.01 LOSS: 0.0781\n", + "EPOCH 32: ITER 100/ 313 TIME: 0.23 LOSS: 0.0764\n", + "EPOCH 32: ITER 200/ 313 TIME: 0.22 LOSS: 0.0790\n", + "EPOCH 32: ITER 300/ 313 TIME: 0.24 LOSS: 0.0779\n", + "EPOCH 32: TIME: 72.13 ETA: 4904.99\n", + "Epoch 34/100\n", + "EPOCH 33: ITER 0/ 313 TIME: 0.01 LOSS: 0.0767\n", + "EPOCH 33: ITER 100/ 313 TIME: 0.24 LOSS: 0.0753\n", + "EPOCH 33: ITER 200/ 313 TIME: 0.23 LOSS: 0.0782\n", + "EPOCH 33: ITER 300/ 313 TIME: 0.23 LOSS: 0.0792\n", + "EPOCH 33: TIME: 72.17 ETA: 4835.59\n", + "Epoch 35/100\n", + "EPOCH 34: ITER 0/ 313 TIME: 0.01 LOSS: 0.0772\n", + "EPOCH 34: ITER 100/ 313 TIME: 0.22 LOSS: 0.0796\n", + "EPOCH 34: ITER 200/ 313 TIME: 0.23 LOSS: 0.0784\n", + "EPOCH 34: ITER 300/ 313 TIME: 0.23 LOSS: 0.0792\n", + "EPOCH 34: TIME: 72.19 ETA: 4764.25\n", + "Epoch 36/100\n", + "EPOCH 35: ITER 0/ 313 TIME: 0.01 LOSS: 0.0767\n", + "EPOCH 35: ITER 100/ 313 TIME: 0.23 LOSS: 0.0767\n", + "EPOCH 35: ITER 200/ 313 TIME: 0.23 LOSS: 0.0800\n", + "EPOCH 35: ITER 300/ 313 TIME: 0.23 LOSS: 0.0789\n", + "EPOCH 35: TIME: 72.17 ETA: 4691.24\n", + "Epoch 37/100\n", + "EPOCH 36: ITER 0/ 313 TIME: 0.01 LOSS: 0.0782\n", + "EPOCH 36: ITER 100/ 313 TIME: 0.23 LOSS: 0.0760\n", + "EPOCH 36: ITER 200/ 313 TIME: 0.22 LOSS: 0.0798\n", + "EPOCH 36: ITER 300/ 313 TIME: 0.23 LOSS: 0.0774\n", + "EPOCH 36: TIME: 72.18 ETA: 4619.76\n", + "Epoch 38/100\n", + "EPOCH 37: ITER 0/ 313 TIME: 0.01 LOSS: 0.0759\n", + "EPOCH 37: ITER 100/ 313 TIME: 0.23 LOSS: 0.0758\n", + "EPOCH 37: ITER 200/ 313 TIME: 0.23 LOSS: 0.0784\n", + "EPOCH 37: ITER 300/ 313 TIME: 0.23 LOSS: 0.0792\n", + "EPOCH 37: TIME: 72.19 ETA: 4548.23\n", + "Epoch 39/100\n", + "EPOCH 38: ITER 0/ 313 TIME: 0.01 LOSS: 0.0786\n", + "EPOCH 38: ITER 100/ 313 TIME: 0.23 LOSS: 0.0757\n", + "EPOCH 38: ITER 200/ 313 TIME: 0.23 LOSS: 0.0800\n", + "EPOCH 38: ITER 300/ 313 TIME: 0.23 LOSS: 0.0796\n", + "EPOCH 38: TIME: 72.20 ETA: 4476.56\n", + "Epoch 40/100\n", + "EPOCH 39: ITER 0/ 313 TIME: 0.01 LOSS: 0.0774\n", + "EPOCH 39: ITER 100/ 313 TIME: 0.23 LOSS: 0.0796\n", + "EPOCH 39: ITER 200/ 313 TIME: 0.23 LOSS: 0.0775\n", + "EPOCH 39: ITER 300/ 313 TIME: 0.23 LOSS: 0.0759\n", + "EPOCH 39: TIME: 72.21 ETA: 4404.64\n", + "Epoch 41/100\n", + "EPOCH 40: ITER 0/ 313 TIME: 0.01 LOSS: 0.0769\n", + "EPOCH 40: ITER 100/ 313 TIME: 0.23 LOSS: 0.0784\n", + "EPOCH 40: ITER 200/ 313 TIME: 0.23 LOSS: 0.0777\n", + "EPOCH 40: ITER 300/ 313 TIME: 0.24 LOSS: 0.0756\n", + "EPOCH 40: TIME: 72.23 ETA: 4333.55\n", + "Epoch 42/100\n", + "EPOCH 41: ITER 0/ 313 TIME: 0.01 LOSS: 0.0789\n", + "EPOCH 41: ITER 100/ 313 TIME: 0.23 LOSS: 0.0767\n", + "EPOCH 41: ITER 200/ 313 TIME: 0.23 LOSS: 0.0782\n", + "EPOCH 41: ITER 300/ 313 TIME: 0.22 LOSS: 0.0780\n", + "EPOCH 41: TIME: 72.18 ETA: 4258.54\n", + "Epoch 43/100\n", + "EPOCH 42: ITER 0/ 313 TIME: 0.01 LOSS: 0.0789\n", + "EPOCH 42: ITER 100/ 313 TIME: 0.22 LOSS: 0.0774\n", + "EPOCH 42: ITER 200/ 313 TIME: 0.24 LOSS: 0.0764\n", + "EPOCH 42: ITER 300/ 313 TIME: 0.23 LOSS: 0.0750\n", + "EPOCH 42: TIME: 72.18 ETA: 4186.24\n", + "Epoch 44/100\n", + "EPOCH 43: ITER 0/ 313 TIME: 0.01 LOSS: 0.0745\n", + "EPOCH 43: ITER 100/ 313 TIME: 0.23 LOSS: 0.0746\n", + "EPOCH 43: ITER 200/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 43: ITER 300/ 313 TIME: 0.24 LOSS: 0.0759\n", + "EPOCH 43: TIME: 72.22 ETA: 4116.50\n", + "Epoch 45/100\n", + "EPOCH 44: ITER 0/ 313 TIME: 0.01 LOSS: 0.0774\n", + "EPOCH 44: ITER 100/ 313 TIME: 0.23 LOSS: 0.0770\n", + "EPOCH 44: ITER 200/ 313 TIME: 0.23 LOSS: 0.0751\n", + "EPOCH 44: ITER 300/ 313 TIME: 0.23 LOSS: 0.0753\n", + "EPOCH 44: TIME: 72.21 ETA: 4043.61\n", + "Epoch 46/100\n", + "EPOCH 45: ITER 0/ 313 TIME: 0.01 LOSS: 0.0763\n", + "EPOCH 45: ITER 100/ 313 TIME: 0.23 LOSS: 0.0761\n", + "EPOCH 45: ITER 200/ 313 TIME: 0.23 LOSS: 0.0783\n", + "EPOCH 45: ITER 300/ 313 TIME: 0.22 LOSS: 0.0768\n", + "EPOCH 45: TIME: 72.27 ETA: 3974.83\n", + "Epoch 47/100\n", + "EPOCH 46: ITER 0/ 313 TIME: 0.01 LOSS: 0.0756\n", + "EPOCH 46: ITER 100/ 313 TIME: 0.23 LOSS: 0.0764\n", + "EPOCH 46: ITER 200/ 313 TIME: 0.24 LOSS: 0.0765\n", + "EPOCH 46: ITER 300/ 313 TIME: 0.24 LOSS: 0.0752\n", + "EPOCH 46: TIME: 72.29 ETA: 3903.56\n", + "Epoch 48/100\n", + "EPOCH 47: ITER 0/ 313 TIME: 0.01 LOSS: 0.0753\n", + "EPOCH 47: ITER 100/ 313 TIME: 0.24 LOSS: 0.0760\n", + "EPOCH 47: ITER 200/ 313 TIME: 0.23 LOSS: 0.0770\n", + "EPOCH 47: ITER 300/ 313 TIME: 0.24 LOSS: 0.0771\n", + "EPOCH 47: TIME: 72.23 ETA: 3828.34\n", + "Epoch 49/100\n", + "EPOCH 48: ITER 0/ 313 TIME: 0.01 LOSS: 0.0766\n", + "EPOCH 48: ITER 100/ 313 TIME: 0.23 LOSS: 0.0775\n", + "EPOCH 48: ITER 200/ 313 TIME: 0.23 LOSS: 0.0758\n", + "EPOCH 48: ITER 300/ 313 TIME: 0.26 LOSS: 0.0754\n", + "EPOCH 48: TIME: 72.29 ETA: 3758.84\n", + "Epoch 50/100\n", + "EPOCH 49: ITER 0/ 313 TIME: 0.01 LOSS: 0.0790\n", + "EPOCH 49: ITER 100/ 313 TIME: 0.23 LOSS: 0.0792\n", + "EPOCH 49: ITER 200/ 313 TIME: 0.23 LOSS: 0.0770\n", + "EPOCH 49: ITER 300/ 313 TIME: 0.23 LOSS: 0.0774\n", + "EPOCH 49: TIME: 72.25 ETA: 3684.74\n", + "Epoch 51/100\n", + "EPOCH 50: ITER 0/ 313 TIME: 0.01 LOSS: 0.0765\n", + "EPOCH 50: ITER 100/ 313 TIME: 0.22 LOSS: 0.0764\n", + "EPOCH 50: ITER 200/ 313 TIME: 0.23 LOSS: 0.0758\n", + "EPOCH 50: ITER 300/ 313 TIME: 0.24 LOSS: 0.0775\n", + "EPOCH 50: TIME: 72.19 ETA: 3609.62\n", + "Epoch 52/100\n", + "EPOCH 51: ITER 0/ 313 TIME: 0.01 LOSS: 0.0760\n", + "EPOCH 51: ITER 100/ 313 TIME: 0.23 LOSS: 0.0767\n", + "EPOCH 51: ITER 200/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 51: ITER 300/ 313 TIME: 0.23 LOSS: 0.0755\n", + "EPOCH 51: TIME: 72.22 ETA: 3539.02\n", + "Epoch 53/100\n", + "EPOCH 52: ITER 0/ 313 TIME: 0.01 LOSS: 0.0753\n", + "EPOCH 52: ITER 100/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 52: ITER 200/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 52: ITER 300/ 313 TIME: 0.24 LOSS: 0.0759\n", + "EPOCH 52: TIME: 72.25 ETA: 3468.24\n", + "Epoch 54/100\n", + "EPOCH 53: ITER 0/ 313 TIME: 0.01 LOSS: 0.0745\n", + "EPOCH 53: ITER 100/ 313 TIME: 0.23 LOSS: 0.0732\n", + "EPOCH 53: ITER 200/ 313 TIME: 0.24 LOSS: 0.0751\n", + "EPOCH 53: ITER 300/ 313 TIME: 0.23 LOSS: 0.0759\n", + "EPOCH 53: TIME: 72.25 ETA: 3395.62\n", + "Epoch 55/100\n", + "EPOCH 54: ITER 0/ 313 TIME: 0.01 LOSS: 0.0775\n", + "EPOCH 54: ITER 100/ 313 TIME: 0.23 LOSS: 0.0777\n", + "EPOCH 54: ITER 200/ 313 TIME: 0.23 LOSS: 0.0736\n", + "EPOCH 54: ITER 300/ 313 TIME: 0.23 LOSS: 0.0761\n", + "EPOCH 54: TIME: 72.24 ETA: 3323.22\n", + "Epoch 56/100\n", + "EPOCH 55: ITER 0/ 313 TIME: 0.01 LOSS: 0.0762\n", + "EPOCH 55: ITER 100/ 313 TIME: 0.23 LOSS: 0.0750\n", + "EPOCH 55: ITER 200/ 313 TIME: 0.22 LOSS: 0.0751\n", + "EPOCH 55: ITER 300/ 313 TIME: 0.24 LOSS: 0.0769\n", + "EPOCH 55: TIME: 72.26 ETA: 3251.48\n", + "Epoch 57/100\n", + "EPOCH 56: ITER 0/ 313 TIME: 0.01 LOSS: 0.0743\n", + "EPOCH 56: ITER 100/ 313 TIME: 0.24 LOSS: 0.0749\n", + "EPOCH 56: ITER 200/ 313 TIME: 0.24 LOSS: 0.0763\n", + "EPOCH 56: ITER 300/ 313 TIME: 0.23 LOSS: 0.0757\n", + "EPOCH 56: TIME: 72.23 ETA: 3178.03\n", + "Epoch 58/100\n", + "EPOCH 57: ITER 0/ 313 TIME: 0.01 LOSS: 0.0753\n", + "EPOCH 57: ITER 100/ 313 TIME: 0.23 LOSS: 0.0749\n", + "EPOCH 57: ITER 200/ 313 TIME: 0.23 LOSS: 0.0761\n", + "EPOCH 57: ITER 300/ 313 TIME: 0.22 LOSS: 0.0778\n", + "EPOCH 57: TIME: 72.24 ETA: 3106.16\n", + "Epoch 59/100\n", + "EPOCH 58: ITER 0/ 313 TIME: 0.01 LOSS: 0.0735\n", + "EPOCH 58: ITER 100/ 313 TIME: 0.23 LOSS: 0.0762\n", + "EPOCH 58: ITER 200/ 313 TIME: 0.23 LOSS: 0.0771\n", + "EPOCH 58: ITER 300/ 313 TIME: 0.22 LOSS: 0.0729\n", + "EPOCH 58: TIME: 72.19 ETA: 3031.95\n", + "Epoch 60/100\n", + "EPOCH 59: ITER 0/ 313 TIME: 0.01 LOSS: 0.0760\n", + "EPOCH 59: ITER 100/ 313 TIME: 0.23 LOSS: 0.0719\n", + "EPOCH 59: ITER 200/ 313 TIME: 0.22 LOSS: 0.0783\n", + "EPOCH 59: ITER 300/ 313 TIME: 0.23 LOSS: 0.0748\n", + "EPOCH 59: TIME: 72.23 ETA: 2961.49\n", + "Epoch 61/100\n", + "EPOCH 60: ITER 0/ 313 TIME: 0.01 LOSS: 0.0741\n", + "EPOCH 60: ITER 100/ 313 TIME: 0.22 LOSS: 0.0732\n", + "EPOCH 60: ITER 200/ 313 TIME: 0.23 LOSS: 0.0759\n", + "EPOCH 60: ITER 300/ 313 TIME: 0.23 LOSS: 0.0755\n", + "EPOCH 60: TIME: 72.28 ETA: 2891.34\n", + "Epoch 62/100\n", + "EPOCH 61: ITER 0/ 313 TIME: 0.01 LOSS: 0.0755\n", + "EPOCH 61: ITER 100/ 313 TIME: 0.23 LOSS: 0.0759\n", + "EPOCH 61: ITER 200/ 313 TIME: 0.23 LOSS: 0.0755\n", + "EPOCH 61: ITER 300/ 313 TIME: 0.23 LOSS: 0.0727\n", + "EPOCH 61: TIME: 72.30 ETA: 2819.78\n", + "Epoch 63/100\n", + "EPOCH 62: ITER 0/ 313 TIME: 0.01 LOSS: 0.0761\n", + "EPOCH 62: ITER 100/ 313 TIME: 0.23 LOSS: 0.0736\n", + "EPOCH 62: ITER 200/ 313 TIME: 0.24 LOSS: 0.0746\n", + "EPOCH 62: ITER 300/ 313 TIME: 0.24 LOSS: 0.0730\n", + "EPOCH 62: TIME: 72.22 ETA: 2744.35\n", + "Epoch 64/100\n", + "EPOCH 63: ITER 0/ 313 TIME: 0.01 LOSS: 0.0739\n", + "EPOCH 63: ITER 100/ 313 TIME: 0.23 LOSS: 0.0732\n", + "EPOCH 63: ITER 200/ 313 TIME: 0.23 LOSS: 0.0743\n", + "EPOCH 63: ITER 300/ 313 TIME: 0.24 LOSS: 0.0744\n", + "EPOCH 63: TIME: 72.25 ETA: 2673.27\n", + "Epoch 65/100\n", + "EPOCH 64: ITER 0/ 313 TIME: 0.01 LOSS: 0.0744\n", + "EPOCH 64: ITER 100/ 313 TIME: 0.23 LOSS: 0.0755\n", + "EPOCH 64: ITER 200/ 313 TIME: 0.24 LOSS: 0.0759\n", + "EPOCH 64: ITER 300/ 313 TIME: 0.24 LOSS: 0.0727\n", + "EPOCH 64: TIME: 72.28 ETA: 2602.18\n", + "Epoch 66/100\n", + "EPOCH 65: ITER 0/ 313 TIME: 0.02 LOSS: 0.0740\n", + "EPOCH 65: ITER 100/ 313 TIME: 0.23 LOSS: 0.0744\n", + "EPOCH 65: ITER 200/ 313 TIME: 0.22 LOSS: 0.0750\n", + "EPOCH 65: ITER 300/ 313 TIME: 0.23 LOSS: 0.0752\n", + "EPOCH 65: TIME: 72.27 ETA: 2529.62\n", + "Epoch 67/100\n", + "EPOCH 66: ITER 0/ 313 TIME: 0.01 LOSS: 0.0762\n", + "EPOCH 66: ITER 100/ 313 TIME: 0.23 LOSS: 0.0728\n", + "EPOCH 66: ITER 200/ 313 TIME: 0.23 LOSS: 0.0743\n", + "EPOCH 66: ITER 300/ 313 TIME: 0.24 LOSS: 0.0738\n", + "EPOCH 66: TIME: 72.25 ETA: 2456.67\n", + "Epoch 68/100\n", + "EPOCH 67: ITER 0/ 313 TIME: 0.01 LOSS: 0.0744\n", + "EPOCH 67: ITER 100/ 313 TIME: 0.23 LOSS: 0.0745\n", + "EPOCH 67: ITER 200/ 313 TIME: 0.23 LOSS: 0.0761\n", + "EPOCH 67: ITER 300/ 313 TIME: 0.23 LOSS: 0.0757\n", + "EPOCH 67: TIME: 72.27 ETA: 2385.02\n", + "Epoch 69/100\n", + "EPOCH 68: ITER 0/ 313 TIME: 0.01 LOSS: 0.0753\n", + "EPOCH 68: ITER 100/ 313 TIME: 0.23 LOSS: 0.0752\n", + "EPOCH 68: ITER 200/ 313 TIME: 0.23 LOSS: 0.0746\n", + "EPOCH 68: ITER 300/ 313 TIME: 0.24 LOSS: 0.0744\n", + "EPOCH 68: TIME: 72.25 ETA: 2312.10\n", + "Epoch 70/100\n", + "EPOCH 69: ITER 0/ 313 TIME: 0.02 LOSS: 0.0734\n", + "EPOCH 69: ITER 100/ 313 TIME: 0.23 LOSS: 0.0757\n", + "EPOCH 69: ITER 200/ 313 TIME: 0.23 LOSS: 0.0767\n", + "EPOCH 69: ITER 300/ 313 TIME: 0.23 LOSS: 0.0741\n", + "EPOCH 69: TIME: 72.34 ETA: 2242.65\n", + "Epoch 71/100\n", + "EPOCH 70: ITER 0/ 313 TIME: 0.01 LOSS: 0.0746\n", + "EPOCH 70: ITER 100/ 313 TIME: 0.23 LOSS: 0.0734\n", + "EPOCH 70: ITER 200/ 313 TIME: 0.24 LOSS: 0.0740\n", + "EPOCH 70: ITER 300/ 313 TIME: 0.23 LOSS: 0.0721\n", + "EPOCH 70: TIME: 72.33 ETA: 2170.00\n", + "Epoch 72/100\n", + "EPOCH 71: ITER 0/ 313 TIME: 0.01 LOSS: 0.0748\n", + "EPOCH 71: ITER 100/ 313 TIME: 0.23 LOSS: 0.0753\n", + "EPOCH 71: ITER 200/ 313 TIME: 0.23 LOSS: 0.0750\n", + "EPOCH 71: ITER 300/ 313 TIME: 0.24 LOSS: 0.0739\n", + "EPOCH 71: TIME: 72.33 ETA: 2097.68\n", + "Epoch 73/100\n", + "EPOCH 72: ITER 0/ 313 TIME: 0.01 LOSS: 0.0728\n", + "EPOCH 72: ITER 100/ 313 TIME: 0.24 LOSS: 0.0725\n", + "EPOCH 72: ITER 200/ 313 TIME: 0.23 LOSS: 0.0754\n", + "EPOCH 72: ITER 300/ 313 TIME: 0.24 LOSS: 0.0747\n", + "EPOCH 72: TIME: 72.40 ETA: 2027.31\n", + "Epoch 74/100\n", + "EPOCH 73: ITER 0/ 313 TIME: 0.01 LOSS: 0.0736\n", + "EPOCH 73: ITER 100/ 313 TIME: 0.23 LOSS: 0.0715\n", + "EPOCH 73: ITER 200/ 313 TIME: 0.23 LOSS: 0.0737\n", + "EPOCH 73: ITER 300/ 313 TIME: 0.23 LOSS: 0.0742\n", + "EPOCH 73: TIME: 72.40 ETA: 1954.91\n", + "Epoch 75/100\n", + "EPOCH 74: ITER 0/ 313 TIME: 0.01 LOSS: 0.0731\n", + "EPOCH 74: ITER 100/ 313 TIME: 0.23 LOSS: 0.0740\n", + "EPOCH 74: ITER 200/ 313 TIME: 0.23 LOSS: 0.0728\n", + "EPOCH 74: ITER 300/ 313 TIME: 0.23 LOSS: 0.0758\n", + "EPOCH 74: TIME: 72.39 ETA: 1882.14\n", + "Epoch 76/100\n", + "EPOCH 75: ITER 0/ 313 TIME: 0.02 LOSS: 0.0740\n", + "EPOCH 75: ITER 100/ 313 TIME: 0.23 LOSS: 0.0732\n", + "EPOCH 75: ITER 200/ 313 TIME: 0.23 LOSS: 0.0754\n", + "EPOCH 75: ITER 300/ 313 TIME: 0.24 LOSS: 0.0744\n", + "EPOCH 75: TIME: 72.36 ETA: 1809.04\n", + "Epoch 77/100\n", + "EPOCH 76: ITER 0/ 313 TIME: 0.01 LOSS: 0.0757\n", + "EPOCH 76: ITER 100/ 313 TIME: 0.23 LOSS: 0.0721\n", + "EPOCH 76: ITER 200/ 313 TIME: 0.23 LOSS: 0.0727\n", + "EPOCH 76: ITER 300/ 313 TIME: 0.23 LOSS: 0.0742\n", + "EPOCH 76: TIME: 72.41 ETA: 1737.84\n", + "Epoch 78/100\n", + "EPOCH 77: ITER 0/ 313 TIME: 0.01 LOSS: 0.0732\n", + "EPOCH 77: ITER 100/ 313 TIME: 0.24 LOSS: 0.0722\n", + "EPOCH 77: ITER 200/ 313 TIME: 0.23 LOSS: 0.0720\n", + "EPOCH 77: ITER 300/ 313 TIME: 0.23 LOSS: 0.0746\n", + "EPOCH 77: TIME: 72.41 ETA: 1665.35\n", + "Epoch 79/100\n", + "EPOCH 78: ITER 0/ 313 TIME: 0.01 LOSS: 0.0724\n", + "EPOCH 78: ITER 100/ 313 TIME: 0.22 LOSS: 0.0743\n", + "EPOCH 78: ITER 200/ 313 TIME: 0.23 LOSS: 0.0728\n", + "EPOCH 78: ITER 300/ 313 TIME: 0.23 LOSS: 0.0760\n", + "EPOCH 78: TIME: 72.32 ETA: 1591.12\n", + "Epoch 80/100\n", + "EPOCH 79: ITER 0/ 313 TIME: 0.01 LOSS: 0.0721\n", + "EPOCH 79: ITER 100/ 313 TIME: 0.24 LOSS: 0.0734\n", + "EPOCH 79: ITER 200/ 313 TIME: 0.24 LOSS: 0.0766\n", + "EPOCH 79: ITER 300/ 313 TIME: 0.23 LOSS: 0.0734\n", + "EPOCH 79: TIME: 72.40 ETA: 1520.47\n", + "Epoch 81/100\n", + "EPOCH 80: ITER 0/ 313 TIME: 0.01 LOSS: 0.0720\n", + "EPOCH 80: ITER 100/ 313 TIME: 0.23 LOSS: 0.0733\n", + "EPOCH 80: ITER 200/ 313 TIME: 0.23 LOSS: 0.0733\n", + "EPOCH 80: ITER 300/ 313 TIME: 0.24 LOSS: 0.0730\n", + "EPOCH 80: TIME: 72.43 ETA: 1448.55\n", + "Epoch 82/100\n", + "EPOCH 81: ITER 0/ 313 TIME: 0.01 LOSS: 0.0719\n", + "EPOCH 81: ITER 100/ 313 TIME: 0.24 LOSS: 0.0705\n", + "EPOCH 81: ITER 200/ 313 TIME: 0.24 LOSS: 0.0742\n", + "EPOCH 81: ITER 300/ 313 TIME: 0.24 LOSS: 0.0738\n", + "EPOCH 81: TIME: 72.42 ETA: 1375.96\n", + "Epoch 83/100\n", + "EPOCH 82: ITER 0/ 313 TIME: 0.01 LOSS: 0.0744\n", + "EPOCH 82: ITER 100/ 313 TIME: 0.24 LOSS: 0.0745\n", + "EPOCH 82: ITER 200/ 313 TIME: 0.24 LOSS: 0.0721\n", + "EPOCH 82: ITER 300/ 313 TIME: 0.22 LOSS: 0.0731\n", + "EPOCH 82: TIME: 72.34 ETA: 1302.03\n", + "Epoch 84/100\n", + "EPOCH 83: ITER 0/ 313 TIME: 0.01 LOSS: 0.0723\n", + "EPOCH 83: ITER 100/ 313 TIME: 0.23 LOSS: 0.0739\n", + "EPOCH 83: ITER 200/ 313 TIME: 0.22 LOSS: 0.0731\n", + "EPOCH 83: ITER 300/ 313 TIME: 0.23 LOSS: 0.0727\n", + "EPOCH 83: TIME: 72.35 ETA: 1229.99\n", + "Epoch 85/100\n", + "EPOCH 84: ITER 0/ 313 TIME: 0.01 LOSS: 0.0745\n", + "EPOCH 84: ITER 100/ 313 TIME: 0.23 LOSS: 0.0733\n", + "EPOCH 84: ITER 200/ 313 TIME: 0.23 LOSS: 0.0728\n", + "EPOCH 84: ITER 300/ 313 TIME: 0.23 LOSS: 0.0718\n", + "EPOCH 84: TIME: 72.39 ETA: 1158.19\n", + "Epoch 86/100\n", + "EPOCH 85: ITER 0/ 313 TIME: 0.01 LOSS: 0.0734\n", + "EPOCH 85: ITER 100/ 313 TIME: 0.23 LOSS: 0.0727\n", + "EPOCH 85: ITER 200/ 313 TIME: 0.23 LOSS: 0.0740\n", + "EPOCH 85: ITER 300/ 313 TIME: 0.23 LOSS: 0.0725\n", + "EPOCH 85: TIME: 72.34 ETA: 1085.15\n", + "Epoch 87/100\n", + "EPOCH 86: ITER 0/ 313 TIME: 0.01 LOSS: 0.0733\n", + "EPOCH 86: ITER 100/ 313 TIME: 0.24 LOSS: 0.0721\n", + "EPOCH 86: ITER 200/ 313 TIME: 0.22 LOSS: 0.0756\n", + "EPOCH 86: ITER 300/ 313 TIME: 0.23 LOSS: 0.0712\n", + "EPOCH 86: TIME: 72.31 ETA: 1012.36\n", + "Epoch 88/100\n", + "EPOCH 87: ITER 0/ 313 TIME: 0.01 LOSS: 0.0714\n", + "EPOCH 87: ITER 100/ 313 TIME: 0.23 LOSS: 0.0727\n", + "EPOCH 87: ITER 200/ 313 TIME: 0.23 LOSS: 0.0722\n", + "EPOCH 87: ITER 300/ 313 TIME: 0.23 LOSS: 0.0739\n", + "EPOCH 87: TIME: 72.38 ETA: 940.99\n", + "Epoch 89/100\n", + "EPOCH 88: ITER 0/ 313 TIME: 0.01 LOSS: 0.0717\n", + "EPOCH 88: ITER 100/ 313 TIME: 0.23 LOSS: 0.0721\n", + "EPOCH 88: ITER 200/ 313 TIME: 0.24 LOSS: 0.0721\n", + "EPOCH 88: ITER 300/ 313 TIME: 0.24 LOSS: 0.0730\n", + "EPOCH 88: TIME: 72.32 ETA: 867.87\n", + "Epoch 90/100\n", + "EPOCH 89: ITER 0/ 313 TIME: 0.01 LOSS: 0.0717\n", + "EPOCH 89: ITER 100/ 313 TIME: 0.24 LOSS: 0.0720\n", + "EPOCH 89: ITER 200/ 313 TIME: 0.22 LOSS: 0.0729\n", + "EPOCH 89: ITER 300/ 313 TIME: 0.23 LOSS: 0.0704\n", + "EPOCH 89: TIME: 72.34 ETA: 795.69\n", + "Epoch 91/100\n", + "EPOCH 90: ITER 0/ 313 TIME: 0.01 LOSS: 0.0739\n", + "EPOCH 90: ITER 100/ 313 TIME: 0.23 LOSS: 0.0717\n", + "EPOCH 90: ITER 200/ 313 TIME: 0.23 LOSS: 0.0735\n", + "EPOCH 90: ITER 300/ 313 TIME: 0.23 LOSS: 0.0715\n", + "EPOCH 90: TIME: 72.34 ETA: 723.40\n", + "Epoch 92/100\n", + "EPOCH 91: ITER 0/ 313 TIME: 0.01 LOSS: 0.0733\n", + "EPOCH 91: ITER 100/ 313 TIME: 0.23 LOSS: 0.0724\n", + "EPOCH 91: ITER 200/ 313 TIME: 0.23 LOSS: 0.0725\n", + "EPOCH 91: ITER 300/ 313 TIME: 0.24 LOSS: 0.0740\n", + "EPOCH 91: TIME: 72.30 ETA: 650.73\n", + "Epoch 93/100\n", + "EPOCH 92: ITER 0/ 313 TIME: 0.01 LOSS: 0.0705\n", + "EPOCH 92: ITER 100/ 313 TIME: 0.22 LOSS: 0.0740\n", + "EPOCH 92: ITER 200/ 313 TIME: 0.23 LOSS: 0.0723\n", + "EPOCH 92: ITER 300/ 313 TIME: 0.23 LOSS: 0.0729\n", + "EPOCH 92: TIME: 72.31 ETA: 578.46\n", + "Epoch 94/100\n", + "EPOCH 93: ITER 0/ 313 TIME: 0.01 LOSS: 0.0727\n", + "EPOCH 93: ITER 100/ 313 TIME: 0.24 LOSS: 0.0712\n", + "EPOCH 93: ITER 200/ 313 TIME: 0.24 LOSS: 0.0720\n", + "EPOCH 93: ITER 300/ 313 TIME: 0.24 LOSS: 0.0704\n", + "EPOCH 93: TIME: 72.35 ETA: 506.43\n", + "Epoch 95/100\n", + "EPOCH 94: ITER 0/ 313 TIME: 0.01 LOSS: 0.0724\n", + "EPOCH 94: ITER 100/ 313 TIME: 0.24 LOSS: 0.0713\n", + "EPOCH 94: ITER 200/ 313 TIME: 0.23 LOSS: 0.0725\n", + "EPOCH 94: ITER 300/ 313 TIME: 0.23 LOSS: 0.0723\n", + "EPOCH 94: TIME: 72.43 ETA: 434.59\n", + "Epoch 96/100\n", + "EPOCH 95: ITER 0/ 313 TIME: 0.01 LOSS: 0.0731\n", + "EPOCH 95: ITER 100/ 313 TIME: 0.23 LOSS: 0.0720\n", + "EPOCH 95: ITER 200/ 313 TIME: 0.24 LOSS: 0.0714\n", + "EPOCH 95: ITER 300/ 313 TIME: 0.24 LOSS: 0.0713\n", + "EPOCH 95: TIME: 72.40 ETA: 362.02\n", + "Epoch 97/100\n", + "EPOCH 96: ITER 0/ 313 TIME: 0.01 LOSS: 0.0728\n", + "EPOCH 96: ITER 100/ 313 TIME: 0.23 LOSS: 0.0714\n", + "EPOCH 96: ITER 200/ 313 TIME: 0.23 LOSS: 0.0712\n", + "EPOCH 96: ITER 300/ 313 TIME: 0.23 LOSS: 0.0709\n", + "EPOCH 96: TIME: 72.41 ETA: 289.64\n", + "Epoch 98/100\n", + "EPOCH 97: ITER 0/ 313 TIME: 0.01 LOSS: 0.0722\n", + "EPOCH 97: ITER 100/ 313 TIME: 0.24 LOSS: 0.0728\n", + "EPOCH 97: ITER 200/ 313 TIME: 0.22 LOSS: 0.0716\n", + "EPOCH 97: ITER 300/ 313 TIME: 0.23 LOSS: 0.0738\n", + "EPOCH 97: TIME: 72.39 ETA: 217.16\n", + "Epoch 99/100\n", + "EPOCH 98: ITER 0/ 313 TIME: 0.01 LOSS: 0.0735\n", + "EPOCH 98: ITER 100/ 313 TIME: 0.23 LOSS: 0.0707\n", + "EPOCH 98: ITER 200/ 313 TIME: 0.24 LOSS: 0.0713\n", + "EPOCH 98: ITER 300/ 313 TIME: 0.24 LOSS: 0.0727\n", + "EPOCH 98: TIME: 72.38 ETA: 144.77\n", + "Epoch 100/100\n", + "EPOCH 99: ITER 0/ 313 TIME: 0.01 LOSS: 0.0741\n", + "EPOCH 99: ITER 100/ 313 TIME: 0.23 LOSS: 0.0725\n", + "EPOCH 99: ITER 200/ 313 TIME: 0.23 LOSS: 0.0736\n", + "EPOCH 99: ITER 300/ 313 TIME: 0.23 LOSS: 0.0715\n", + "EPOCH 99: TIME: 72.32 ETA: 72.32\n" + ] + } + ] }, { "cell_type": "markdown", @@ -978,7 +1829,31 @@ { "cell_type": "code", "metadata": { - "id": "ysZAvORejASO" + "id": "EP8jkJood6ru", + "outputId": "d3abec6b-80ab-4d42-cdf5-812eb0ac67af" + }, + "source": [ + "tf.one_hot(np.squeeze(batch_y), q_levels).shape" + ], + "execution_count": null, + "outputs": [ + { + "data": { + "text/plain": [ + "TensorShape([96, 28, 28, 2])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ysZAvORejASO", + "outputId": "9db684ba-7321-476c-8312-a94bf584323d" }, "source": [ "# Test set performance\n", @@ -988,24 +1863,33 @@ "\n", " # Calculate cross-entropy (= negative log-likelihood)\n", " loss = compute_loss(tf.one_hot(np.squeeze(batch_y), q_levels), logits)\n", - "\n", " test_loss.append(loss)\n", "print('nll : {:} nats'.format(np.array(test_loss).mean()))\n", "print('bits/dim : {:}'.format(np.array(test_loss).mean() / np.log(2)))" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nll : 0.08589804917573929 nats\n", + "bits/dim : 0.12392468956787539\n" + ] + } + ] }, { "cell_type": "code", "metadata": { - "id": "20hQ3iOEjUNX" + "id": "20hQ3iOEjUNX", + "outputId": "c843674c-52e0-44ae-a6c3-4fddf7f4b2d8" }, "source": [ "# Test set performance\n", "test_loss = []\n", "for batch_x, batch_y in test_dataset:\n", - " logits = gated_pixelcnn(np.squeeze(batch_x), training=False)\n", + " logits = gated_pixelcnn(batch_x, training=False)\n", "\n", " # Calculate cross-entropy (= negative log-likelihood)\n", " loss = compute_loss(tf.one_hot(np.squeeze(batch_y), q_levels), logits)\n", @@ -1015,12 +1899,45 @@ "print('bits/dim : {:}'.format(np.array(test_loss).mean() / np.log(2)))" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nll : 0.08589804917573929 nats\n", + "bits/dim : 0.12392468956787539\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "q_ricPssd6ru", + "outputId": "0d85a004-c2f7-490f-8827-f0931143f41d" + }, + "source": [ + "width" + ], + "execution_count": null, + "outputs": [ + { + "data": { + "text/plain": [ + "28" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ] }, { "cell_type": "code", "metadata": { - "id": "P2_qYR4TjXgD" + "id": "P2_qYR4TjXgD", + "outputId": "3c3b889e-e619-4aec-bfcd-8235fec7c0f3" }, "source": [ "# Generating new images\n", @@ -1038,15 +1955,27 @@ " plt.xticks(np.array([]))\n", " plt.yticks(np.array([]))\n", "plt.show()\n", - "plt.savefig('numbers1.png')" + "fig.savefig('numbers1.png')" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAMfCAYAAAC3pGqlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCSklEQVR4nO3dzW7bvLYGYLX4pknnBXL/F2ag8xPP6zMovJu6riIuUUv8eR6gg/3tRLFeU7TJRVFfbrfbbQEAADjY17NfAAAAMAeDDwAAIIXBBwAAkMLgAwAASGHwAQAApDD4AAAAUhh8AAAAKQw+AACAFAYfAABACoMPAAAghcEHAACQwuADAABI8V/0F3/+/Ln8+PFjeXl5Wb58+VLzNXXjdrst1+t1+f79+/L16/ZxnOxi2cntF9nFyS5GXxcnuzjZxenr4mQXU5TbLehyudyWZfFvWW6Xy0V2CdnJTXay6yc32clOduf/09fJrsXcwpWPl5eXZVmW5XK5LK+vr9HDdO39/X15e3v7XxZbyS6Wndx+kV2c7GL0dXGyi5NdnL4uTnYxJbmFBx/3stLr6+u0Qd+Vlthk91tJdnL7k+ziZBejr4uTXZzs4vR1cbKL2ZKbG84BAIAUBh8AAEAKgw8AACCFwQcAAJDC4AMAAEgR3u0q094Httxut0qvBPjM2vXqWgSglM+Vsah8AAAAKQw+AACAFM0tu9q7xGrrMUcq05VmNtK5H+WIdrhmhPdkS2b3nxnhfGlL9JrVFqFNW69pnyv9UfkAAABSNFP5yJ5p7t2evGaeJWihnc2YO9TUwnUMHCN6fff+3eaz8+71vJ5R+QAAAFKcWvk4c/aq1xGyGb/PZWXUW9s5wt4ZqmWR41Ee35vRcx79/GB0vt/MQ+UDAABIYfABAACkOGXZVc3S2lqpfbYSXmkWvS49+xdbDvdptHZ4tJmXus3WpzOX2ZZKlij5ftNrX/fxtY7e16l8AAAAKZrZaneLnkawmeTyixzyeBjofqPPbGWJthGzzAC/ZH/+qnwAAAApDD4AAIAUqcuuossMlMPr3GT6SK6UOGOZ0Cg3o7ewxKrXDGtm18L7AOTp9TPk/nqP+O635xi1clT5AAAAUjR9w3lvI9WzmM3jSC20r15nr45Quh2jzFSAP8q+nkfIV/vJsXe2n+Ozq/VZrPIBAACkaKbykT17YLbCbDJ1lbSj2R6Ud8Zr7SmfNXsevGXGGsbg+8oxGTweK6vqpPIBAACkMPgAAABSNLPsqiY3K0HbnpWNXbf7zbgkQbvhCFntSvstY/lVXI3MbLULAAB0pZnKR3Q0Wzpr0OtouXQLurXzfDxGrzfxcj7tJZ+Z0jjt9U9783BD/zFmz27L951Z+sFnG26sfV+OblecnafKBwAAkKKZysfdLKPZqJpr9mTNmrMeRqZdPmeWOd5GZslnixpZjHyNZm3nPHKG5ChdtfKsYnLWg2pVPgAAgBQGHwAAQIrUZVfZyyqU2p9T7mWvI66ts8q/rbPc6m+WsxyjRna9tskj2o22uI8t2ePWllbV2LhoL5UPAAAgxSk3nB9RAel1tgVmp+LxmyzinmUnq3VmkduivX5u5o1J1s59bx7ZbU/lAwAASHHqVrtG+cczk0otNdvJjLNWj2wXC+1Ym1XOmm1/PL5rnqOd1cZUPgAAgBQGHwAAQIrmnnBOuWgpWEmXLNrob5Zb1WWpCjWttZ9o24r2fzZR4JkR2oDKBwAAkELlo1N7bnwbYdRcw96b8Webzd86C9fbln9HUuU4hg0L6tjb3rwP+T5mPmN/oc2NQeUDAABIofLRmRqj/rVjjD6TUprfEbMsI81c1cin9wyescX1MWbuu1pi9nmbaD8g33r0C21S+QAAAFIYfAAAACksu+IP93KvUmWOlvM+8qm+LZ7vXltzGvHczyTPHJa85ZHnPvJrn8oHAACQQuWjMzVH9GszWR5uxF20AqK9POfaKiOvc7jp+VjaMDNT+QAAAFIYfAAAACksu5pY6XKalm+ObsXIe7Z734/j2qJH2ivZjtwIhTwqHwAAQAqVD4aerX9kpo6j1LiOVEDWRXOxXfQ2ttOta22W3rW+j9z6pvIBAACkUPkAOMjW2bnHmdGP/9sMX5lRq7b06+M17FoHlQ8AACCJwQcAAJBiumVXbvJaZ8kC5HNj6n57+y75Wh50tsfMe895yzXZ+zkSEx583BvM+/t7tReTqcbrvh+j9OKRXSy73nNbU3JOsovrObsz/34rfd2RGRx17FayqynrNY2YXYk9r7+Xvq7F96iX7FpTklt48HG9XpdlWZa3t7foIU717du3ase6Xq9Fx5PdbyXZ9Z7bmkimsovrMbua113U2X3dkRkcne/Z2dWU3RZHyq5EjZxb7+ta6Nf+pfXsWrUlty+3YM3r58+fy48fP5aXl5dpl+rcbrfler0u379/X75+3X77jOxi2cntF9nFyS5GXxcnuzjZxenr4mQXU5JbePABAABQwm5XAABACoMPAAAghcEHAACQwuADAABIYfABAACkMPgAAABSGHwAAAApDD4AAIAUBh8AAECK/6K/6FHyZY+S/0h2sezk9ovs4mQXo6+Lk12c7OL0dXGyiynK7RZ0uVxuy7L4tyy3y+Uiu4Ts5CY72fWTm+xkJ7vz/+nrZNdibuHKx8vLy7Isy3K5XJbX19foYbr2/v6+vL29/S+LrWQXy05uv8guTnYx+ro42cXJLk5fFye7mJLcwoOPe1np9fV12qDvSktssvutJDu5/Ul2cbKL0dfFyS5OdnH6ujjZxWzJzQ3nAABACoMPAAAghcEHAACQwuADAABIYfABH3z58mXaPboBAI5m8AEAAKQIb7ULo1Dp6NPa+3a73RJfCQD0Z8v3nyM+T1U+AACAFAYfAABAiiGXXT2WkSzBgL5ZGgf0amv/NeN3ldK+fcaMarlnvZZhVr4qHwAAQIohKx+whdn0Mj3kNfKsmBvsoV01+scZVm308DnSsy35fvyZs9qYygcAAJBimMqH0XRdz/IccRbm0QznWKqla2vU90dV49+sl6dFJf3i1rbZUl9bU83z2nLfQq+y3v8WslP5AAAAUhh8AAAAKYZZdvVMC6WllpWW+EYudxKjLcRtvf5mX5L18RzXsqi5ZGGUXGtkMkoWpc7YAvZ+jFGWX+3tu0bJ4V9mWmb1SOUDAABI0X3lY/SRcS1y+mXWG+n3eDYbJ7NjjDbzWVu03c2Wpxt8486sNM7QTksy3Fr17MlR59Hb9anyAQAApDD4AAAAUnS77GqUEtxRovk8lu6eHWe2MnzEnvbZaq6tvq7ebGkbIy43ONNa25XvNrMsu3x2bvdzP2LZ7mjtz9LmdbL4ReUDAABI0W3lY81sI8sztgR8/LuzZf5o7+zV7PmN7rP24f2nJjfm13XE9alC8DntcVwqHwAAQIohKx9b9H7fwlnVjhFtreDUmoXxXgAtMcN8rBnynfmBeZRT+QAAAFIYfAAAACmmW3Y1Svnzs604lSaf+yw3S6uo6cynJcNHNsXIV7qt9mhsfMC/qHwAAAApuqp8bJ1FfLyZfPRRdNY2gKPZ0j7WKiUjz1jRLu2ujhn6OM5R0rZUR3+TxTxUPgAAgBRdVT6eWZu9NopeZw3wL1vPY5TzrWH2tcx7bMnFrHy+0dtr6flF22D090bPP2KGB/n6njYnlQ8AACCFwQcAAJCi+2VXnvRdzpIOMsxcTneNMRrLqbbbe85bl5G3lO2zJfCPm/98pI+cm8oHAACQovvKxxYtzQ7ACPZuY936LN5ZZq4W0ZboNa6d7jfaYwK0IR6pfAAAACm6qnysPfDtXz/H56zHJGrrtbalPa2tD+7N48zlnnMaIQ/6pf2dZ+t3npbsec3a2jxUPgAAgBQGHwAAQIqull19pDwXJzuyrbW5x9L8SE/1rbksDaAno90435qjl7UduRRa5QMAAEjRbeUDoGdmA4EZ9HjjfItKNlqquQ3+EVQ+AACAFCofAxlprTzMzPV7vBnWo3uYZx3Z24CP9r5tvcZG2m69luhjJaLVpqzsVT4AAIAUBh8AAEAKy64G8KykNvJSAvoXLSVDbbO0t1nOs5bPPldr5TnrZ/Wz/O5ZWH5V9zOy5OezlvypfAAAAClUPig282wE+8w6y7eVawv6sGVmem9/13t/oL8v81le0fawpZKUvcmBygcAAJDC4AMAAEhh2dUASktpe816M9iRJeQRspx9icFWliJA+/Y8lXvLz8/S3z2a9bxb0NJGLyofAABACpWPwR1ZFRntKazPZM1S9/p0+hr59HS+wHz23kA+Ux+nslvuzIrEWW1T5QMAAEih8jGhI2cmep3Br23tAUqfme2emsdcZjnvj2Y8Z3LN1q8cQXb1zVwpOaLi0cv9RiofAABACoMPAAAgxTDLrtwIRgvW2tOepVi9K9n4wNI9gLG1tO1rpqPOu7c8w4OP+8m8v79XezFn2PP6779b+saOkt1n1s4vkl0PudV8bf86Vo/ZRf9u7dfbanYtt+ll0dft0Vp2Pb0XrWXXk577urPft7OyO+q8s/IsyS08+Lher8uyLMvb21v0EE349u3b7mNcr9ei44yS3We2ZFKSXQ+51WhPW4/VU3bRXGrm+VFr2R11nrXp6+Jaya6XtvZRK9n1qMe+rpU2mp3dUeedneeW3L7cgvWYnz9/Lj9+/FheXl6mWTry6Ha7Ldfrdfn+/fvy9ev222dkF8tObr/ILk52Mfq6ONnFyS5OXxcnu5iS3MKDDwAAgBJ2uwIAAFIYfAAAACkMPgAAgBQGHwAAQAqDDwAAIIXBBwAAkMLgAwAASGHwAQAApDD4AAAAUvwX/UWPki97lPxHsotlJ7dfZBcnuxh9XZzs4mQXp6+Lk11MUW63oMvlcluWxb9luV0uF9klZCc32cmun9xkJzvZnf9PXye7FnMLVz5eXl6WZVmWy+WyvL6+Rg/Ttff39+Xt7e1/WWwlu1h2cvtFdnGyi9HXxckuTnZx+ro42cWU5BYefNzLSq+vr9MGfVdaYpPdbyXZye1PsouTXYy+Lk52cbKL09fFyS5mS25uOAcAAFIYfAAAUNWXL1+mvfmadQYfAABAivA9HwC05dks4+12O+GVADN61gd9/G/6I5ZF5QMAAEii8gEAE3qcpTYrDWRQ+QAAAFIYfAAAACksu2IqbsilFTVvwrSdJVtpKzCu0uv7rO8/Kh8AAEAKlQ+mZxtAMtWceV47lrbMVtoKR8pqX/f+cMb2HP1cOeszROUDAABIMW3lY+socYYRdGkW0RH2DFmOqJc1pC37LMOSGbvZqh366jrc61FmT7t7vJ5nuGaz25f2fHwGR1aSVD4AAIAUBh8AAECKaZddrRmlDPqZ0pLdlp+fJbsZ7L2BTVvYbu9yK/Ly6aldazPlan4ubjlW70uyWmpjPeRVw5FL358d+4hNeVQ+AACAFNNVPnqfZTiaDLiLtoX7NVZjtsT1uo0siFi7IVqbOl/v28Af8ZpbqrRky1h98vH3j8xa5QMAAEhh8AEAAKSYYtmVpRu0ZPQlDs+Wcjyec43Sbu83tm993bP3X3vOcdYlGlvPe8vN0jO0sY/OPN8R2utR+c3eD36mt6fIq3wAAAAppqh8sN3aDDWUWKturFV/9mx12VN7XXvdI8yAtqCkPcyY+Vo+jxtH9HRt9SraB85Iezw+gyPbo8oHAACQYujKhzWC655lUDJDzX6zZFmypWeNeyF6s/e+l7tZ2hPrjt7iVDvjSCP17TWNdN2pfAAAACkMPgAAgBRDL7uinBveyFZyQ+tn7XL2m2MtkzzGjBk+fhbMmAHljv7uoB2OQeUDAABIMV3lw6h5m7UKiJkworZsclD7+C2o8VDFaGXI9bpOlfc5ucDcjqykq3wAAAAphqx8mLGhRdrlurUZ+hGz21oNKZlp2vpgR1UQnhnxOutJj/m7T5QIlQ8AACCFwQcAAJBiyGVX1FPjRtmWjHY+Iyp9X3pbQrTl9fZ2TqOa5X2oteyPunrKfuvyq7Vz8pl8vqzt2lU+AACAFCofg6q1vaaZiP0eM+xpNitD9IZFOa5zI+g6uah4tGC0dljabrTBfC20OZUPAAAghcpHZ0pHrFt+vnRrU7MRnGWktpe1thaWJf5ZwDFm/YzVDo9Rq5qRlb3KBwAAkMLgAwAASDHFsqvRS3h7nwjdws1HzGu29jfb+fZo9M+Mfzm6bc6a60ezLre6m+Ecj9Lb0qo1Kh8AAECKYSofs8wm1niQz93sN36NfG6j+thmR3r/RjqXXo3+HtTcApUys1c72KbmNdd6u1L5AAAAUgxT+ZhNjVFt6yNj5rT3HqbWue7a4H1Yd8QDams9/LYXKh48qvFZNkLbUfkAAABSGHwAAAApLLsCTrV1EwXKPOY5Qqmefriun3Mdzqn0Ohi9nah8AAAAKVQ+gKaYKY2THa35OIN7b58tbpkdvXZG3yCDOp5VAltp+2dQ+QAAAFIYfAAAACksu4IDKLsfY+Yy9RrPE4DPHdEvbzmma5A7beEXlQ8AACCFyken3LTUH+/Tc2YO41TY4Bhb+5wjqo7PjqkPZCQqHwAAQAqVj86Y6WQE2nHc1uzMlPJMdtW8pWu9xWuipXwgi8oHAACQwuADAABIMcyyq2dPUYVsbhRc59qMc2M+tWlTcVuy09/Bc+HBx71Den9/r/ZijnLUa7wft7Rzrp1dD+/Bo0h2PbW5j2q/3pmyu6t9rYya3eh9XY96z+7ov792/N6zq6n0XEbv644ku5iS3MKDj+v1uizLsry9vUUPkebbt2+HHv96vRb9jdrZHX1+RyrJrqc299FR788M2d3VznDU7Ebv63rWa3ZHt6ktx+81u5qi78OofV0G2cVsye3LLVhT/fnz5/Ljx4/l5eVl2tLi7XZbrtfr8v379+Xr1+23z8gulp3cfpFdnOxi9HVxsouTXZy+Lk52MSW5hQcfAAAAJex2BQAApDD4AAAAUhh8AAAAKQw+AACAFAYfAABACoMPAAAghcEHAACQwuADAABIYfABAACk+C/6ix4lX/Yo+Y9kF8tObr/ILk52Mfq6ONnFyS5OXxcnu5ii3G5Bl8vltiyLf8tyu1wuskvITm6yk10/uclOdrI7/5++TnYt5haufLy8vCzLsiyXy2V5fX2NHqZr7+/vy9vb2/+y2Ep2sezk9ovs4mQXo6+Lk13cmdl9+/btr//2f//3f6FjnUFfFye7mJLcwoOPe1np9fV12qDvSktssvutJDu5/Ul2cbKL0dfFyS6ulex6fB/0dXGyi9mSmxvOAQCAFOHKBwB1PZsxut1uJ7wSmNvH627WG4jhKCofAABACpUPgBOYTYV2uT7hOCofAABAimEqH1tnKayfhno+XneurX8ziwpAqSPuA2zhc1vlAwAASGHwAQAApOh22VV0GcP992ZbIlJz2cds2d1F285j9qPmN+u1dQQZHqO0Hxzpfdhy7iOdL/TsiKW6LS3/VfkAAABSdFH5OHIEOMJMT/ZodqTsPvMs2715e5DcPGaeac/mc4IeRNtpj21Q/9eWlvJV+QAAAFJ0Ufm4j9ZqbKfb0pq3PWqcx5ZR8Ch5lTqrmrQsbc1O/EsL1ZuRZqVlFzdrH7VFC1vQ99a3HaFGG+3lmt1zrmu/2/p5ZxgpA5UPAAAghcEHAACQootlV3dHlJxmKQmPfG5HKF3qV+vvsa6XJTYtLh8Yoa87Mtde2lYv1jbr6LX91bR3y/bWtP76ejBThiofAABAiq4qH5SLzjC1OHN7hpnOleOc2Y56n0377PW7Rvsx23u1d2OOHq7dHl4j7VH5AAAAUhh8AAAAKaZfdtVbGfjofduVUGlRD+2yhdc44nLJj6+79CbmFt6TM7TwfI/ePWt3WZs2tPAcpZqi12bP51xixH77MyofAABAiikqH2ujyhG2n7xT7WA0M84IRcxyDa9tgT1LBq2b5X04ouI2WnYqHnGjZ6DyAQAApBiy8lEye9DL6PKIGWAzEJQYbVauts/uTdir9JgjX7s1sl7LR1vnoyMrbqq7v812vjP3MyofAABACoMPAAAgRbfLrmYuVy3LvvLk7NnRr5bL8ls3tjhSy/kcpdY5j7a96b9kn9NIGdZY7jfTcmffNfgXlQ8AACBF05WPI0bNvc4omK2iRUe0k15ny46+4fyzvwln6fWa3aPWhgWzX8Ozn/9HM2Wh8gEAAKRorvJRcwZlplHkZ7bmKjOyjbgGem1rzuixyLf2IDlsE/svM517tK+bKaMeZN/zpvIBAACkMPgAAABSNLfsqpTS3boRl7SQq4WndffKtcWIZrl+qU+f+FvrG7YcuRRL5QMAAEjRTOXDzUp1qXjQkpL2aFYV2uGzmS2873myrslnf6fWJhwqHwAAQIpmKh9bGFmvs51u20Z6f/Y+YGvrOfaQBWM44yGRR1mrInp4L/RjpO8NH6l8AAAAKQw+AACAFM0su1orE/dWTsrm5vJ29L5cY4+9TzvuPTt9F7PRvuEYez9Pj2KrXQAAoCvNVD7uzKTUJc/63LC5zYjnxBy03b/JBM6VcQ1mrUBQ+QAAAFI0V/lgm89Gp2ap6ovOCDzezzTCe9PqetQzPduq1X0gnElbA9acdc+wygcAAJDC4AMAAEhh2VVnet+OtDc1ny5qCcRzI7bpx/f64zlaihUnO4DP7V0mfjSVDwAAIIXKR2c8jPF8cn6uVi4j5vvsnJ5VQ0Y8970+m8GTHVE1K9vQo7PatsoHAACQwuADAABIYdlVp5SBc8h5fanfRyXLXywbXH8uyGxZ1FBz4wL581Evm2LM1G5Hf9bUs8/dXtrhFiofAABAitTKx1lPUgTylM7OuOa3V5dm9NnN+kccnzk8qz62RNv8W4vv05G2ttHoioOzqHwAAAApmrvnw9Z30Kaas4Su33Uf85XV39Yy8RlCRGl7sJLjc9F72FqaoW/J3vbUUoVd5QMAAEhh8AEAAKRobtkV0L5o+Xb2ZQifaaks3ittjAza2XPP+q4j+rOjN6IYUUv5hAcf9zf+/f292ospcdbfffYaSjuhs7NrQSQ7uf3Sc3at/P2esjs7s4+vQV9XTnZxsovrsa8rsfYa977+0bP7qObrLcktPPi4Xq/LsizL29tb9BC7fPv27ZS/+8z1ei16PWdn15KS7OT2px6za+W67Sm7VjJbFn3dHrKLk11cT31dibVzqtVnjprdR0d8vmzJ7cstWDv8+fPn8uPHj+Xl5aWpUk6m2+22XK/X5fv378vXr9tvn5FdLDu5/SK7ONnF6OviZBcnuzh9XZzsYkpyCw8+AAAAStjtCgAASGHwAQAApDD4AAAAUhh8AAAAKQw+AACAFAYfAABACoMPAAAghcEHAACQwuADAABI8V/0Fz1KvuxR8h/JLpad3H6RXZzsYvR1cbKLk12cvi5OdjFFud2CLpfLbVkW/5bldrlcZJeQndxkJ7t+cpOd7GR3/j99nexazC1c+Xh5eVmWZVkul8vy+voaPUzX3t/fl7e3t/9lsZXsYtnJ7RfZxckuRl8XJ7s42cXp6+JkF1OSW3jwcS8rvb6+Thv0XWmJTXa/lWQntz/JLk52Mfq6ONnFyS5OXxcnu5gtubnhHAAASGHwAQAApDD4AAAAUhh8AAAAKQw+AACAFAYfAABAivBWu71a2wLsdrslvhIAAD7yPW18Kh8AAEAKgw8AACDFMMuuSp+AejdzCU9mAL+U9of6Qdgm+l1j67Fci/1R+QAAAFJ0W/koGUnPOCquOdOw5dijZjzTuR7pMUcZstXR12C0r/z4e9oz/O3I7yHP/o7rsB8qHwAAQIquKh+2X+MIWbMzs9iS59bMR76us/qzXmcFXZdAiV77ujWjflaqfAAAACkMPgAAgBRdLbt6prdSU5ZauYy89KF02cvaz9sAYf8yolnbWo2fn8UR1879mDKvY8SlL/Sl180gZuqDVD4AAIAU3Vc+OE9PMwp3pdt21qp2/Ov3eszwI1sRr2thJqu39+OszKL9wKhmPGfq2lJVrNE/9d5WZ9xMSeUDAABIYfABAACk6H7ZlWUfx+i9jPmoZjuJZjNSu9yb52jt61Hp+e1tGyPnOdJ105oj2s0o71fp8ljfRf7t6BxG3DRi7/eT1tueygcAAJCiq8rH1u1PZ7x5J9NMGX481y3tauTZr6xzGyWvj844p55yHPm6aY3K7brS7xSlx5olx1b0UgnYq7eqj8oHAACQoqvKxzOl2yPOMgqO6m30XGrP+/5Y3Xh2LO1q3ejt6+6sdqD98S9ZKwJ6/4zd+rr3VkN6zQdqUPkAAABSGHwAAAApul92tWbtJmClz9+2lo9nz2qWJUOPatw0Gb1Zn3UjZ9bCxiEtvIY9PmsftniOK13yDfym8gEAAKQYuvJxt7ZdaumDhFpRo1phdqaMGfoyvc8ak2frltbPfuaIttR72z369feeD4yg5+8iKh8AAECKKSofH/U+e136uvee5yizWDXPY5RMzrD1QaH82+gPLotun36kEfKteZ/W3mMzl9H7rL2efS/d26+1vqpH5QMAAEhh8AEAAKSYbtkVcIySm1AttSIiewONFpcrrKm5VIMysvubTMqUbryxVYsbRKh8AAAAKaarfDyOAHub2TqaPNjiiI0PtD322FsVGb39PXuwrpnp/WRYJvs66/W6jvZnvZyvygcAAJBi6MrHCKPDR0dsFdxrFuQ4entq7W8bM6xxs7SxLddq9HPRdqnbrb0Po2d2Zj81erYjUfkAAABSGHwAAAApulh2ZYnRMWRBic/ay4jLHFsnV56p2S5mXDq0lyWSf9Je6hjpM1blAwAASNFc5UOVY5uRz40+aZMAc1LtoYTKBwAAkKKZysdIa9kAoGdmsuuZ9TvM3vOOtsFZ8+6JygcAAJDC4AMAAEhx6rKrz0pqSmcAcD6fx89tear8yGqe96wZrhn1lgSVDwAAIEUzN5zf9TySg2dKZ3NcA3z02H60D+jLx2t49Ou39PxUO54bteJxp/IBAACkMPgAAABSNLfsaqbyJH3JKg/f/472D8CItnyebv0MHGXp1kybMKl8AAAAKU6tfIw0imNMo8yo0BftjjNod7TAd8PfRs1C5QMAAEjR3D0fMIKPsxW22qUG7YKjPeu3tLv9Rs6w5ta6I+e0ZsaKo8oHAACQwuADAABIYdkVPBEtgz4rG9//24ylVcpoI7Ri1iUwUfI6X2/vwcxL0MKDj3sw7+/v1V5Mb+7nXtpIZBfLrofcary2z44xanYZes7uzL+vr4uTXZzs4nrs6/b+3Vqvu4Xsemy7JbmFBx/X63VZlmV5e3uLHmIY1+t1+fbtW9HPL4vslqUsux5yK2kHe48xWnaZesyuRtvaS18XJ7s42cX11Nft7eNq95FnZtdCfx+1Jbcvt2Bt5+fPn8uPHz+Wl5eXaZcK3G635Xq9Lt+/f1++ft1++4zsYtnJ7RfZxckuRl8XJ7s42cXp6+JkF1OSW3jwAQAAUMJuVwAAQAqDDwAAIIXBBwAAkMLgAwAASGHwAQAApDD4AAAAUhh8AAAAKQw+AACAFAYfAABAiv+iv+hR8mWPkv9IdrHs5PaL7OJkF6Ovi5NdnOzi9HVxsospyu0WdLlcbsuy+Lcst8vlIruE7OQmO9n1k5vsZCe78//p62TXYm7hysfLy8uyLMtyuVyW19fX6GG69v7+vry9vf0vi61kF8tObr/ILk52Mfq6ONnFyS5OXxcnu5iS3MKDj3tZ6fX1ddqg70pLbLL7rSQ7uf1JdnGyi9HXxckuTnZx+ro42cVsyc0N5wAAQIpw5QOAbT7OBN1utxNfCQCcS+UDAABIofIBABTbsrZbpQ94pPIBAACkaLry8TirYgaFLPe2p81Rm7bFGZ5VKaJtcNaHqLGf/o9lUfkAAACSGHwAAAApml529ch2lRzNcgKA3/b2ib19bkfPt+a5rb2GHjJ81Fsb4HgqHwAAQIquKh9A+2re2DqKj+evukYr9rbFZ9d1r+27dNvgx5/POu+eqgi9tgWOp/IBAACkaK7yMdpaR5jF2rVre8W/HTGDqf/cbrat3O/nV2M2epSs9lwva/9/dhVklPeDHC2sTlD5AAAAUhh8AAAAKZpbdkXc1lLv3vJajZLy//3f/+0+Rq+y3qcMNdqCpQMcpaR99nQj7x7Rm8S3ZrK2vKu1a/3ZDeQ1XtsR59fLzdstLOmhvL1kL9lV+QAAAFKofHRqzyxILzMoWVqbqelhlmjLLMksM8lnqjlj3bua/dpsN6OvKT33Xj9fenyPW3rNvb7vLWitIphB5QMAAEhh8AEAAKSw7KozrZY2S8uF7+/vB72SdvX+DIbP2t7jOWzdB7+Hc29Jq33AWeRxrLUlIaXZu9bL9NC2e/9cy7bleVjLEs8uek1mtzWVDwAAIEUzlQ+j5/3ktN/MWyT+S81rs/csjrLlhsNodq1tqNCj0St1W2Y/o+1vxLyO1vP3odZf39mebe/87P8rtXfzkewKiMoHAACQopnKB9uYVajnyBF+zzNXR1Dx+G3LQ9iO1vvWjkfca7D1mL1nt2bEc6oha0vrXvrJM6qpthWPq9n/1aLyAQAApDD4AAAAUpy67Kp0605oSS8l8iPsvTZd23W2Lt1yzLVjz3IjdenPznxtz27rktnHn4teS1vbWkvXZwtLrNZ+r6Ws1jwuwd3TH/dyzncqHwAAQAo3nDOVPTfK1ZoN7WW2ecv51tz+NarlDEuNdC61eJAdGUo3CYluTerG6T8dsZX7CNuLP6vi1Nya91/HrH38f1H5AAAAUpxS+bANKaM54uFwLRvxnEbnnobtSh+653NrPEc/8K3G3+nZEd8Dsx+UV0t0+/WtfVCLeah8AAAAKQw+AACAFKnLrrKf3ltq1vIn/zbzEsEtJezRM6Af2iKl9nwn8T2jviOz6WGZ5J7t12t9v87KRuUDAABI0cxWu9Et1SBq701ts5jtfOmL9klU6SYMtn3e74jtYkd2xMNot/6dI6l8AAAAKZqpfKypubZSxYQttBOgN+5DqGdrlrKLOTK30bcVj2b37MGFZ1H5AAAAUhh8AAAAKZpedrWlXLa3fNRC+YlzHFmCHLHUCy1qaSnB2aJPeLaddjm50JuW2qzKBwAAkKKZyseRW9iNOAtty798tTL0XnCGXvvB0W8ezRbdXnb0fmv08+O3Wdp0y1Q+AACAFKmVj+h61Mff32rEdazR7LJmDFvP9dms38ds9r7+EdscbRjhwVK96L3CsvV9Xfu53jOgHdoSj1Q+AACAFAYfAABAilNuOD9iO8DSv92bvct5ssqeNZcwnWEtJ6VjjlKyrfizn927pLUXa+e59ybS0bPbq/e+nXm4ltun8gEAAKQ4davdo7ZQnGFWptVzbPV1PTPLbDHn29rGtlw/n22asOfYM8raAKUH+kKOsNZn1biOPHqgPyofAABACoMPAAAgRTNPOC9dAjND2WztxtKjzJDro2fnvHcphuULLMsxT9LVR67bemO05Va/WbbHWUo3MnDdjkHlAwAASNFM5ePO6PQYW2/uP2Kmtkeznz/tMCv9t9L+rObfG4kKLdm2bJd9xN+jLSofAABAiuYqH/x21FbE0Jte73M44oF3rZ3j2Y68z2qkrG1HSktq3mu5dkzapPIBAACkMPgAAABSWHY1MSVKWvBYat+z3LDXDRMss2rLKJlbakVPtL95hAcf90by/v5e7cX05n7upRfMnuxq5n3mexfJrvc2V+t1j55djdf4r2P0mF0L79kZfd2Zjuhne8iutfepp+xa02Nf1wrZxZTkFh58XK/XZVmW5e3tLXqIYVyv1+Xbt29FP78ssexK/k7msaJKsuu9zdXOe9TsauT02TF6yq6F6/Qus6870xGZ95BdS23tox6ya1VPfV1rZBezJbcvt2Cd6+fPn8uPHz+Wl5eXaXdiut1uy/V6Xb5//758/br99hnZxbKT2y+yi5NdjL4uTnZxsovT18XJLqYkt/DgAwAAoITdrgAAgBQGHwAAQAqDDwAAIIXBBwAAkMLgAwAASGHwAQAApDD4AAAAUhh8AAAAKQw+AACAFP9Ff9Gj5MseJf+R7GLZye0X2cXJLkZfFye7ONnF6eviZBdTlNst6HK53JZl8W9ZbpfLRXYJ2clNdrLrJzfZyU525//T18muxdzClY+Xl5dlWZblcrksr6+v0cN07f39fXl7e/tfFlvJLpad3H6RXZzsYvR1cbKLk12cvi5OdjEluYUHH/ey0uvr67RB35WW2GT3W0l2cvuT7OJkF6Ovi5NdnOzi9HVxsovZkpsbzgEAgBQGHwAAQAqDDwAAIEX4ng8AAOp4XCt/u91OeiV9WbvHoKcMn51HT6+/hMoHAACQYujKR40HvYw66gQAnts6C33kA+U+Htt3kT+N9CC/tXMZtQ2ofAAAACkMPgAAgBRDLruKluNGKmkBQIlRbtw9ykhLfXo1y3sw+vWm8gEAAKQYpvJhxoYj2LQAYNwbX/fam4XvLtvIaSwqHwAAQIphKh8cb4QHIJ2xXnSE3DLM9IClEmb8ymhHQA9muX/lGZUPAAAghcEHAACQwrIrVo2yhGHm8mZLSt+HWZesbc3Jkixq0D/G3bNzvf1t7/eHUb5/bDXyuT1S+QAAAFKofDC9o2cbHmdvZtyycsvM6rMszMjGmZGlptna0dH90ahVS302W6h8AAAAKQw+AACAFN0vuxq1dHm2GW70Gu18WhFdYrX2c7OV8j/ms+Wm+7V89JFQx9p1OeNy2kwyHYvKBwAAkKL7ygfPudn0l6wZ89lm5qNK26Nc/67+PJthnbVCBGdZu+YeP3+3Xpezf17f6cfWtZRPtM2qfAAAAClUPganAlJPS7MNLap1b4Gcn9uS4Z77QfQR86l5fxZ/k+/fot9JPHB2LCofAABACoMPAAAgRbfLrvYu8ZhhK9llUdpcc1Y5c6RMs7ZxHSmzbG5Gh+OULnXUl/2ytz8a8TtcT3303qxVPgAAgBTdVj6iRp7Z72nUfCQ5HK/mzJ73a7+1WcBZZmG1o23kdLyRrqtSpZWgmmbZYGeE81P5AAAAUkxR+RhxbeBHo59fa9ay3TLD0+v2pjVmr0qP0VM+a456z6PvySi5fmaW8zyC7KjliPtiRqjgzfwQSpUPAAAghcEHAACQYphlV1vLeqOUrT4r081y49UzH895b2m2NL8RtzWNloRHyiDqWQal/ZIcgdHs/W5S83P+bFu/N4y0YZLKBwAAkGKYyscs20mW2jLL2vuswZoW3/sWX1MNtdrRCPmUZnFkhW6EPNlv5H4eRlB6Y37P33tVPgAAgBTDVD6eaX3kF5G13emI2bWil612a86UzlRtW5a/1/CeeR8SbKVtQVui9wO2XhVR+QAAAFIYfAAAACmGXHbVQknpaDXOcfSlL5wjWiYe8bp9dk4jnueZ9GP/JhtGpW2X36C+5WeyPp9UPgAAgBRDVj5GdvSo1KwsUdoOLdAOy8mMXrQwa9+yvQ+szdoQR+UDAABI0VXlwxq/OuRINrNVHEX7AfhcaVVky0Oqo1Q+AACAFAYfAABAii6WXVkmdCzLFnjm8SndRxwbAD5j6e6xjvy8f0blAwAASNFF5WMLI9/tZHWukfLfu60fUN/Wa2+kvojxqHbk+5jr2k3oe/NX+QAAAFIYfAAAACmaXna1pXSs9EaLRm+Xo58fLMux+9yfpffXz/hmXW6V9XTxFqh8AAAAKZqufADnG30GBh49zry6BuAYNkd4rtaN3dG/+y+ecA4AAHSl28rHbKNg6ni2pjK6Jaw2+JwtdumJ9spnZr0H4Uju6f3bs21u176zRPMp7fOOeB9UPgAAgBQGHwAAQIrmll3VKIGXHGO2st6s1p7UWfOY2hP0YctSGkuy+IzlQ2Xktc2zPugxu6P7pyPfh/Dg4/6i3t/fq72YErX+7p7j3H+39A06O7sWRLLrIbeM1zZCdmf3Gz1nd4bZ+rrH1zvS50RP70Vr2UWd8Tp67uta+fs9ZldT6bmU5BYefFyv12VZluXt7S16iF2+ffvWzHGu12vRcc7OriUl2fWQW612uUXP2WXm9EzP2Z1plr7u8RxH+pw4+9qLaCW7qDMz77Gva6WN9phdTdH3YUtuX27BusrPnz+XHz9+LC8vL9OWpm+323K9Xpfv378vX79uv31GdrHs5PaL7OJkF6Ovi5NdnOzi9HVxsospyS08+AAAAChhtysAACCFwQcAAJDC4AMAAEhh8AEAAKQw+AAAAFIYfAAAACkMPgAAgBQGHwAAQAqDDwAAIMV/0V/0KPmyR8l/JLtYdnL7RXZxsovR18XJLk52cfq6ONnFFOV2C7pcLrdlWfxbltvlcpFdQnZyk53s+slNdrKT3fn/9HWyazG3cOXj5eVlWZZluVwuy+vra/QwXXt/f1/e3t7+l8VWsotlJ7dfZBcnuxh9XZzs4mQXp6+Lk11MSW7hwce9rPT6+jpt0HelJTbZ/VaSndz+JLs42cXo6+JkFye7OH1dnOxituTmhnMAACCFwQcAAJAivOwK4Fl59Xa7nfBKxiJXAEal8gEAAKRQ+QCKmZkHACJUPgAAgBQqH/yhZGs5M91zUe04zqxPxC21lpO2SA98xhK193Oipfak8gEAAKQw+AAAAFJYdjWhWks8Ph6npXIe9GDrdejaOsY9f/lytOhnrqWuczl6+W1L7UnlAwAASDF05aN0FDnijEJ0JL2WxbNjmkX800iz2i3NloxgS9uQ7281ZwPd2E+m6AYJa79nxcF4svulFtqNygcAAJBiyMrH3vWVLYwKa7mfS83ZkmfHnFGN8x+xzfG3kSphrYlmtjfrXiuCzz4L9EN5tmQ862esbYjL9JyBygcAAJDC4AMAAEgxzLKraAl87ebprcfowSjncSYlYUpZbnWM0ryOXr7S6vv32Xk//v+eIP9bjWV1tZY4/+v19OiIrf7vRmyjR5xTC9mpfAAAACm6r3y0MIJjPLZD5WhZ7cfNxHWNMgO9LH+3iZHOjXOc2Yb0db+1fi2rfAAAACkMPgAAgBTdLrt6LCnVLLMp2c3Lcqu/Pdtz/sjy9gg3vWafw5Z26+b3uN6W945wDbUoux20vnTmo55eayuOuE57eR9UPgAAgBRdVT5qzjr0NpPFccwSbvNs28ejr8lR1GhHI+fTE30CHx1RBe7pWq/5WqOPR5hVNIsW+jCVDwAAIEVXlY+PzK62pYWRdE2jnU9tz+4DuZv1Gttz3rUy027rmrUt87nHPjDr4cQtXOPZ1Y4ZPauojdQfqXwAAAApDD4AAIAU3S67KuGG4rpGKf3ZdGC/Z3kd0T5Gel8sWdjv6CUuR27lPosRnzb97FzWtiIfTel5Zb/3vbW1teXLd6N+Xqh8AAAAKbqofERHfioex5Ihz5RWQ7bM/vTOA/7iatxwGZ2d7vX9OOKaqvE53GueLWghuy3t6qjXOfLnw4xUPgAAgBRdVD62MLP4p1prlmeYbZilTZxphoy3ztDPkEWmknsLZn6P1s5phn6+1NY2MFs7Wpbjz6v1e0tqK61UZt1reSSVDwAAIIXBBwAAkKKLZVez3Sy4RWmJbdTt2kr1VpqcwYjLFnp93a1bW55QunW29yiHnLH9eh0jnbPKBwAAkKKLykepkUaHd9EbsPbOOIyYJedTgWKPrTeOz/6wwK3nu/fzYrZc2UY/f6yeN1pS+QAAAFIMU/locWS3V41R7Yi51OYhWHlmv1eL+h7bS0kl5Nnvz2zmrYjpy4yf2yWVpNYzUfkAAABSGHwAAAApul121XpJ6Siznnctny0rKHlaMnXJnBpGePovY5j986TmebuGx6LyAQAApOii8jHriHfW2ZIspQ8se/w9tpv1GqYNtbYeBzjKnqptb99LVD4AAIAUXVQ+7nob2dEHa8TP5brmaK5nStVsMzNuC0sdo7YXlQ8AACCFwQcAAJCiq2VXnk5Llmc3qGprZdy0z9m0QeiX63dcKh8AAECKLiofW7ZENQrmCEc8JElb5WwjzyiOfG5nmi27zx5I++znqMMGEeNT+QAAAFIYfAAAACm6WHZ1t7UMCpzHEoV8RzyToLf3SrurS2a/yaK+aJ/lvRiDygcAAJCiq8rHR483odsSFZiNCrCKB/RobSMhxqfyAQAApGim8uEBgtA3M9D51mYPR85cWwPol8oHAACQwuADAABI0cyyq6hnyw563SqyBZYzAK3SP8FYSh+h4PvdGMKDj/sb//7+Xu3FPNp77CNf28fjl14EGdkdoebrjWTXa26ParXrnrJr5T3rMbuos6/Xjz+fkV2r708P2bVKdnGj93UZ3z1Hze4oJbmFBx/X63VZlmV5e3uLHuJT3759O/X3t7per0V/KyO7IxyRZ0l2veb2qFaOPWWXdS1u1VN2UWdfr/efX5ac7FprY49azq51sosbta/LuN5Hze5oW3L7cgvWrn7+/Ln8+PFjeXl5mXaf5tvttlyv1+X79+/L16/bb5+RXSw7uf0iuzjZxejr4mQXJ7s4fV2c7GJKcgsPPgAAAErY7QoAAEhh8AEAAKQw+AAAAFIYfAAAACkMPgAAgBQGHwAAQAqDDwAAIIXBBwAAkMLgAwAASPFf9Bc9Sr7sUfIfyS6Wndx+kV2c7GL0dXGyi5NdnL4uTnYxRbndgi6Xy21ZFv+W5Xa5XGSXkJ3cZCe7fnKTnexkd/4/fZ3sWswtXPl4eXlZlmVZLpfL8vr6Gj1M197f35e3t7f/ZbGV7GLZye0X2cXJLkZfFye7ONnF6eviZBdTklt48HEvK72+vk4b9F1piU12v5VkJ7c/yS5OdjH6ujjZxckuTl8XJ7uYLbm54RwAAEhh8AEAAKQw+AAAAFIYfAAAACkMPgAAgBQGH0BVX758mfYhSwDAOoMPAAAghcEHAACQIvyQwZ7sWQJyu90qvpJjfTzPnl43Y9Ie66i1hG2k92BrJiOdM8AoVD4AAIAUp1Y+3JRax7Mc7//NzB+0Sf93vLWM9Y1QX2m/5jqM67l/U/kAAABSnFL5aHXGr/WRItCXGn3dWr/Ual96lGfnu6XfVh0+pq2Uts3esx7xnGqJti/3Bm5XknHruap8AAAAKQw+AACAFF1ttdti6ahVsvrlsUz5WS5bypqy5TMttSPt9XcGsy2/OnpZXunxe816tuWNJY74jGX8nFQ+AACAFM1UPnqbCZlFzdF3C+/xmbMJvc76sd8Z77l29rePmYw8s5j1EMYaNxnXei21jdw+jrD1/VurQs6uxnXbS64qHwAAQAqDDwAAIEUzy64oc1TZOlqya6lk3lrZ8fH1tL7/Nvsd8b62dBM7/dJG1rV2k/7dDO/brEuTe35SeZTKBwAAkKKZyseMI7+ImrMyZlJjWqusgOt0mx5udO5B9LNjxPyzPg9arQq09nrog8oHAACQ4pTKR+k2YSPOltRUM4sRcq15DqocnE1VmFI1tzPdWyHv5fO7l77ePYNzGP29VfkAAABSGHwAAAApmrnh/G7rE2gf/7/RS1ScY5YnItMWbe25Z8uJttyI28vSnwxry3ZqPrH8X3+DfxvhydWUq7FMsrfvxCofAABAiuYqHx+VzAKMfhPWEaPa6CwicB7X5vOKpK3D//ZZ5fbI2fTesq5VBXp2rGdqfNaO9nk9ynlElZ5/z9UwlQ8AACBF05WPNWtr5EabDTianP5WOqNQMtM1uprbfM7G2vlyWyrksiu/LmfP7Ojznz1f4kb4bFX5AAAAUhh8AAAAKbpddnVniQd7RdtOjbL5yMtCRjwn+qIN/k0mnMl3tbiRNtVQ+QAAAFJ0X/mAEjVnXbY+uMxMD8+48RcY2Ugz9WcZ9XNC5QMAAEih8tEwM+b9OWKLXuajXQCffZ602E+MOlOfbfSqkcoHAACQwuADAABIYdkVU2hpCVvPpVL2a6ktAu3psY+w3Gq/mTJU+QAAAFJ0X/nocYZgq4+j25HPM0MLD6McYbaCmJlmtIDj9NRH9PRaezBSniofAABAiu4rH8+MNDqkrs/axn2GekulRDvjMyoewJpR+ojWX18PZspQ5QMAAEhh8AEAAKTodtnVY6lypnLVsvx5/rOd+5Ees5Qte7Sw0QHQntGfYA1rVD4AAIAUXVU+zB7C3J71AT3MDvbwGoFjlH530V8wOpUPAAAghcEHAACQootlV561AAD0xHIreE7lAwAASNFF5cNsQFtbdvZ60y85Hp8SX/OYH2lzQItKPqf1Y8xI5QMAAEjRReWDNrRQdaFd2gf05axrdsTZ/q1ZjnjuUErlAwAASGHwAQAApLDsagBH3OC7hfIxcIbocqGZ+6yWlkWOtIHEllx7Pbde7G3b3p984cHH/c16f3+v9mJ6cz/30oZ7VHbZ78WevxfJTpv7pZfsjv5bkeP3kl1rWuvros54HaNkd7Rn5zlKdr20u9Zyy/J4vrKLKcktPPi4Xq/LsizL29tb9BDDuF6vy7dv34p+flnqZ1fyGlr5eyXZaXN/aj27o9vjnuO3nl2rWunrorL7yI96z+5oa9n0nl0v7a613LL8Kx/ZxWzJ7cstWG/6+fPn8uPHj+Xl5aWpcm6m2+22XK/X5fv378vXr9tvn5FdLDu5/SK7ONnF6OviZBcnuzh9XZzsYkpyCw8+AAAAStjtCgAASGHwAQAApDD4AAAAUhh8AAAAKQw+AACAFAYfAABACoMPAAAghcEHAACQwuADAABI8V/0Fz1KvuxR8h/JLpad3H6RXZzsYvR1cbKLk12cvi5OdjFFud2CLpfLbVkW/5bldrlcZJeQndxkJ7t+cpOd7GR3/j99nexazC1c+Xh5eVmWZVkul8vy+voaPUzX3t/fl7e3t/9lsZXsYtnJ7RfZxckuRl8XJ7s42cXp6+JkF1OSW3jwcS8rvb6+Thv0XWmJTXa/lWQntz/JLk52Mfq6ONnFyS5OXxcnu5gtubnhHAAASGHwAQAApDD4AAAAUhh8AAAAKQw+AACAFOHdrnp1vwv/drud/EpyZD3sZpY8oRez9XUAoyn9DtdLf6/yAQAApDD4AAAAUgy57GpLmWrEJQlZS6z4t+h7MFI73OtZhvLZRh/wp8c8tCPXV8u2XL/eq3HV6L97aUMqHwAAQIphKh/REePH32thNLiVGc627H0/1n6/p3b5L7O31zPOf4R2Qz2zX4OtmL06PvpnXcTWNrEln5KVP1uPeQSVDwAAIEX3lY+aszk93AeSte1aL+sGz2AGcd0R+fRwbT6jrXCmz9pfb9dTr2rObPektP+bvSr0TOm5Pfv5tVzP+mxV+QAAAFIYfAAAACm6XXZVUp4rLUO1yDKoc5zZTnp7P4+8JnvLogW9LlXjWNpDW7wf+/W6pXbWZ97jsZ793ezPC5UPAAAgRbeVjzVbRm73n+mtAtKCXmYVWjFLW3s8T+3kuSNyGb1t7TVbW9Qe2jdqm6zR9mptKUu5rG14VT4AAIAUBh8AAECKIZdd7V320cLTHx9fx6NRS7atyN5vfKT3s/RctPP91pb2WQYng2WZ+9zPYmnQ3/a2Q5nu9/E9OCtPlQ8AACDFkJWP3p05sp99VmHvdrFbjmMGkjO0UtHlOLP3362Ysf8/ou2VHrP3bHt//SVUPgAAgBTdVj62bF864jrfkc6lVyoe7KGN5Js111nPm7ZsbYcqd/NQ+QAAAFIYfAAAACm6XXZVordSnlJ5H7a2K+/n32ZZevTsXLYsFd16rL2vBahjlj7tX9b6uiO+g/WaaW/fR4+i8gEAAKToqvLxbKvI0pnFLXodUbNfyUYGW44Dj7a0sWfMmJVzHUK/Rrx+W3jAXwufJSofAABAii4qH89GaS2M3OBuxBmaI8y+Lvqj0vON9nmz5QqtcO2VkdexWlq1ofIBAACkMPgAAABSNLfs6szlVLOW/GwZ+7eZzpU+bNlcQ7vlo9aWJ4/YPlvL+Gx78rj/7ojt5EwttlGVDwAAIMWplY8zRmNG1JDPjebHkB0fRbdxXjsW5WRHb7LbrMoHAACQ4pTKx9EVD7MO27S4DhCAfVr4DLR+f041HqI3S9t5rFQ+e5B2VOv38qp8AAAAKQw+AACAFM1ttbvV6OU4GInrFeYwy5IZPre2AcKWrcNrLkPqTfQ66mU5vcoHAACQ4pTKR+l2gLONeFsiewDW9DLbSju2tJlZvn+sfSdeqxr1/B1a5QMAAEhx6j0fLY7GAICY2T7XZztfjrN1m+IRqkYqHwAAQAqDDwAAIEW3W+0CAOdxozkcY8tWxFt/r0UqHwAAQAqVDwCGVGtmvpfZxLPIh2ei15/29NxIuah8AAAAKQw+AACAFJZdAdAVNzpDm/ZcmyMtK2KdygcAAJBC5YOnzEAArcnaalJlZZ18qMV3jTmpfAAAAClUPiZmxuFv9xk92XC0tdlj7W87WZ1H9mwRfWAe41L5AAAAUhh8AAAAKSy7gieySsKWLcxnS9vyZGCgR6V90Me+Tv81j/Dg495I3t/fq72Y3tzPvfSCkV0suxFzi5yL7OJGz+6o19hyX5fxvuz5Gy1nt9fRr23k7I7WY1/XyvvVY3YtKMktPPi4Xq/LsizL29tb9BDDuF6vy7dv34p+fllktyxl2Y2YW0m7eTR7dnuMmt2e9rRFi33d0edc62+0mN1eGdkvy5jZZempr8tqT1v1lF1LtuT25Rasc/38+XP58ePH8vLyMu2uBbfbbbler8v379+Xr1+33z4ju1h2cvtFdnGyi9HXxckuTnZx+ro42cWU5BYefAAAAJSw2xUAAJDC4AMAAEhh8AEAAKQw+AAAAFIYfAAAACkMPgAAgBQGHwAAQAqDDwAAIIXBBwAAkMLgAwAASGHwAQAApDD4AAAAUvw/kxWrIEbXkzMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ] }, { "cell_type": "code", "metadata": { - "id": "tL8cNhDFjbOY" + "id": "tL8cNhDFjbOY", + "outputId": "a6aba131-83e6-4805-8fd5-156b648a659f" }, "source": [ "# Filling occluded images\n", @@ -1078,10 +2007,31 @@ " plt.xticks(np.array([]))\n", " plt.yticks(np.array([]))\n", "plt.show()\n", - "plt.savefig('numbers2.png')" + "fig.savefig('numbers2.png')" ], "execution_count": null, - "outputs": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAABfCAYAAACJFHpUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAFU0lEQVR4nO3dwY7aWBAF0KKVLfQeif//MCQ+AO/xLCYknUwP2GW7wH7nSCyiNB189YDcV8bs+r7vAwAAYGEfr34AAABAG5QPAACghPIBAACUUD4AAIASygcAAFBC+QAAAEooHwAAQAnlAwAAKKF8AAAAJZQPAACghPIBAACUUD4AAIASP7J3vN1ucblcYr/fx263m/MxrUrf99F1XRyPx/j4GNblZCe3KWSXJ7s82eXJLieTW4TsIqy5KWSXNzi7Pul8PvcR4fbzdj6fZSc32a3kJjvZyW49tzG5yS6fndxkV5VdevKx3+8jIuJ8PsfhcMj+mtW7Xq9xOp1+5TGE7OQ2hezyZJcnuzzZ5WRyi5BdhDU3hezyhmaXLh/3sdLhcGg66LsxYzbZ/Sa3PNnlyS5Pdnmyyxl7GovsfrPm8mSX9yw7HzgHAABKKB8AAEAJ5QMAACihfAAAACXSHzhnXYZ+cKrv+4UfCQAArTL5AAAASph8bMgc36p5/x0mIDny+96jtSkrAJbgPfk9mXwAAAAllA8AAKCE0642YI7TrYDXc4pAvZYz//u9o8UMWIep/8/57v7W++uYfAAAACVMPjZuSLP/bkeg5d3ADNOn/5LJa9nVfuzvfL7+ectZVT8vW9lxbuU4l+Q9ox0mHwAAQImXTj6etVy7BnlTs5M9WWN3r0zZltnxu+dpN5GI+stdtzIJ8PziHb375e1NPgAAgBLKBwAAUOIlp10NHVNWjDPfYfw0VfYYjIvnt4X1lOVSiLy7dz8VoVqLxzyXIa93Tin915wXc2g9y6+y77lD77dk1iYfAABAiZdMPoa2qYqd+VYur8j8TI6Wz2DLO4dLT3qsT14xTdzyJZ7n2GneUh7PjM2rpWwytvSabvIBAACUUD4AAIASb/0N5xXXHm9xzOdDl7zad+tsSyPlR3ywvl4ra+uuteNdky2fShph7c0lm+OjdfXd2nv07yy5Vk0+AACAEm89+WA+diOY0xK7Mo++kXvru4Vz8Twfz5rKM0UfttP86O+2kpO1UG+OXB+97y7J5AMAACjRxOSj5XOsh7TZVrKYS8vraYxsJo/OR13rJStfuWbWlBPLy65FU7U/eV49J6Nxnj3H5vqCxnd4Lpt8AAAAJZQPAACgxKZPu3qH0dI7MxJlCdZVPa91fDX29Io5188Wn/8ugvH/vPbUq8p8ybVt8gEAAJTY9OSj9R2JCBksQaY+LD3W0sexlZyW0mo+rR733Oa4eMZWtXCMVYZmuYXMTT4AAIASygcAAFBC+QAAAEooHwAAQAnlAwAAKKF8AAAAJZQPAACghPIBAACUUD4AAIASygcAAFBC+QAAAEooHwAAQAnlAwAAKKF8AAAAJZQPAACghPIBAACUUD4AAIASygcAAFBC+QAAAEooHwAAQAnlAwAAKKF8AAAAJZQPAACghPIBAACUUD4AAIASygcAAFBC+QAAAEooHwAAQAnlAwAAKKF8AAAAJZQPAACgxI/sHfu+j4iI6/U624NZo/vx3/MYQnZym0J2ebLLk12e7HIyuX39edlZcxmyyxuaXbp8dF0XERGn0yn7Kzal67r4/Pwc/LMRsouQ2xSyy5NdnuzyZJczJrf7z0fILsKam0J2ec+y2/VjtxR+ut1ucblcYr/fx263Sz/Atev7Prqui+PxGB8fw85ik53cppBdnuzyZJcnu5xMbhGyi7DmppBd3tDs0uUDAABgDB84BwAASigfAABACeUDAAAooXwAAAAllA8AAKCE8gEAAJRQPgAAgBLKBwAAUEL5AAAASigfAABACeUDAAAooXwAAAAl/gFvwKkv188+zgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAABfCAYAAACJFHpUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAHPklEQVR4nO3dwW7jNhAGYCbo1dl7gLz/gxnIA8T3uIetmzTrytRIGlHk9wE5FE0c+1/KznBI6ul6vV4LAADAxp73fgIAAMAYFB8AAEAKxQcAAJBC8QEAAKRQfAAAACkUHwAAQArFBwAAkELxAQAApFB8AAAAKRQfAABACsUHAACQQvEBAACk+Cv6g5+fn+X9/b2cTqfy9PS05nM6lOv1Wi6XS3l9fS3Pz3W1nOzktoTs4mQXJ7s42cVEcitFdqUYc0vILq46u2vQ+Xy+llJ8/fN1Pp9lJzfZHeRLdrKT3XG+5uQmu3h2cpNdVnbhzsfpdCqllHI+n8vLy0v0YQ7v4+OjvL29/ZtHDdnJbQnZxckuTnZxsouJ5FaK7Eox5paQXVxtduHi49ZWenl5GTromzltNtl9kVuc7OJkFye7ONnFzF3GIrsvxlyc7OIeZWfDOQAAkELxAQAApFB8AAAAKRQfAABAivCGc46lduPU9Xrd+JkAADAqnQ8AACCFzkdH1rir5u0xdEBi5Hff1NiUFQBb8JncJp0PAAAgheIDAABIYdlVB9ZYbgXszxKBfCNn/vOzY8QMOIalf+fc+3njfT86HwAAQAqdj87VVPb3ZgRGng2M0H36k0z2ZVZ72s98vv93z1llX5ejzDiP8jq35DNjHDofAABAil07H4+qXLMGcUuzkz1Rc2evdNm2mfG75Wk2kVLyj7sepRPg+qJFrR9vr/MBAACkUHwAAAApdll2VdumzGhnttB+Wir6GrSL19fDeIpyFCKta30pQrYRX/Naat7vLCn9bc3DHEbP8rvoZ27tz22Ztc4HAACQYpfOR201lTEzP8rxiqxP52j7DHqeOdy602N8skc3secjnteYae4pj0fm5jVSNhE9vafrfAAAACkUHwAAQIqm73Cecfb4iG0+my7Z271x1lNLeYqN9flGGVs3o73eI+l5KWkpxt5aojlOjat7Y2/q92w5VnU+AACAFE13PliP2QjWtMWszNQduXufLVyL63w+YypOF71upnnq//WSk7GQb41cpz53t6TzAQAApBii8zHyGuuaanaULNYy8niaI5rJ1HrUox5ZueeYOVJObC86FnXV/st19ZiM5nl0ja11g8YWrmWdDwAAIIXiAwAASNH1sqsWWkst0xJlC8ZVPu91fDd3ecWa46fH698hGP/Pe0++rMy3HNs6HwAAQIquOx+wl96PHezhNextjU3oZh2njZ7Po/E0J5+RbwxKPZ8N2+npetP5AAAAUnTZ+eh91nkpGcTU3DAKlrD2Po984hn8HKe9Zzn3BqiOuCdi7hiKPO5Pe13LOh8AAEAKxQcAAJCiy2VXfNHaXU/N8ZU17c2j3qWbuKzNusYT7KP2enaNUmPLcdLCMnGdDwAAIEU3nQ+bzNlTj2Nsr41oLczKZJjqhszZIPjo+0czyvjJZtzFNwT3nNPcG1qyn5b+Ttb5AAAAUnTT+YAs92Z6RpgF23qviuMp+399MBLXM9yn8wEAAKRQfAAAACm6Xnal5cmWRr6j7ZqbT0fLLsqGzjpb3SV4VDaafzGeHnOUfHta2mh+o/MBAACkOHznw0wELehxhmfuEYpumpdPPtN+jmF5ERF9bzPu4D6dDwAAIMXhOx/3mGWA9biJ1L7kvpzPhPmmxt1eNyDN9Oi6+/maa/PqMatS6o+g7/X1t6bFfR7f6XwAAAApFB8AAECKwy+7aqF9BCN4dK1ZHrSe1lvm9Kn2Gh51DE69bkc8//YohxGW7LWg9Vx1PgAAgBSH73wAbZgz02Jmfx2O8iTLKGPMJun13MvtZ74jbMbnTzofAABACsUHAACQwrIroAla7l+mNm1apkAmY4w1Td03KrqM1Cb249H5AAAAUuh8DMJs6Z+WHocox/lGPoIy6udMoXHH2lyXX2rv1M0yU5vRl+bt75326XwAAAApdD46VzODsPWszpFmHqaeq7X3cY7WXU5OkGfNmwa6dutM7QeJPA7t0vkAAABSKD4AAIAUll11aqptOfLmuSV3r93iiMCeWWoF/Rj5eq65U/ej76deTX6j/B0z93UeZeyFi4/bC/z4+FjtyRzR7fXP+QcfLbt7r7Ol3NZ8vIx/05ayi9rrefSQ3V5kF3fk7Gp+/1bPMZLb9+/f+31mT0cec0stff5Hzq6V3/8ou3DxcblcSimlvL29RR+iK5fLpfz69av6e0sZJ7upXFrIrfb3Zz/WIy1kF5WZ0z1Hzm5vsos7YnY1z3fr63lObrfvL2W/7PZ+f/vuiGNuqbXyP2J2rYy9R9k9XYM9ms/Pz/L+/l5Op9Mw7a97rtdruVwu5fX1tTw/122hkZ3clpBdnOziZBcnu5hIbqXIrhRjbgnZxdVmFy4+AAAA5nDaFQAAkELxAQAApFB8AAAAKRQfAABACsUHAACQQvEBAACkUHwAAAApFB8AAEAKxQcAAJBC8QEAAKRQfAAAACkUHwAAQIq/AadQ9nxsDdJKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ] }, { "cell_type": "markdown",