-
Notifications
You must be signed in to change notification settings - Fork 0
/
probers.py
275 lines (195 loc) · 9.79 KB
/
probers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import numpy as np
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import torch
from tqdm import tqdm
from pytorchtools import EarlyStopping
from torch import nn
import random
import string
from sklearn.metrics import f1_score
from torch.utils.data import DataLoader
from custom_dataset import *
import pickle
class MLP(nn.Module):
"""
Basic MLP, should be the same used in other probing papers
"""
def __init__(self, input_size, output_size, hiddens):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_size, hiddens),
nn.ReLU(),
nn.Linear(hiddens, hiddens),
nn.ReLU(),
nn.Linear(hiddens, output_size)
)
def forward(self, x):
return self.layers(x)
class MLPTrainer:
def __init__(self, embedding_size, output_size, hiddens, device):
self.device = device
self.embedding_size = embedding_size
self.output_size = output_size
self.hiddens = hiddens
def train(self, trainloader, validloader, testloader, name, epochs=100, patience=5):
self.mlp = MLP(self.embedding_size, self.output_size, self.hiddens)
self.mlp.to(self.device)
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.mlp.parameters(), lr=1e-3)
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5)
early_stopping = EarlyStopping(patience=patience, verbose=False, path=name)
for epoch in range(0, epochs):
for i, data in enumerate(trainloader, 0):
self.mlp.train()
inputs, targets = data
inputs = inputs.to(self.device)
targets = targets.to(self.device)
optimizer.zero_grad()
outputs = self.mlp(inputs)
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
valid_loss = 0
self.mlp.eval()
with torch.no_grad():
for i, data in enumerate(validloader, 0):
inputs, targets = data
inputs = inputs.to(self.device)
targets = targets.to(self.device)
optimizer.zero_grad()
outputs = self.mlp(inputs)
valid_loss += loss_function(outputs, targets)
scheduler.step(valid_loss)
early_stopping(valid_loss, self.mlp)
if early_stopping.early_stop:
break
mlp = MLP(self.embedding_size, self.output_size, self.hiddens)
mlp.load_state_dict(torch.load(name))
mlp.to(self.device)
mlp.eval()
predictions = []
test_loss = 0
with torch.no_grad():
labels = []
for i, data in enumerate(testloader, 0):
inputs, targets = data
inputs = inputs.to(self.device)
targets = targets.to(self.device)
outputs = mlp(inputs)
test_loss += loss_function(outputs, targets).item()
predictions.extend(np.argmax(outputs.detach().cpu().numpy(), axis=1).tolist())
labels.extend(targets.detach().cpu().numpy().tolist())
os.remove(name)
return {"f1": f1_score(labels, predictions, average="macro"), "loss": test_loss}
class ClassicalProber:
"""
Prober based on the classical framework
"""
def __init__(self, embedding_size, device="cuda"):
self.embedding_size = embedding_size
self.device = device
def run(self, path, batch_size=32):
with open(path, "rb") as filino:
data = pickle.load(filino)
layers = list(data.keys())
layers.remove("labels")
le = LabelEncoder()
labels = le.fit_transform(data["labels"])
number_of_labels = len(set(labels))
results = {}
for l in layers:
train_X, evaluation_X, train_y, evaluation_y = train_test_split(data[l], labels,
test_size=0.2,
random_state=42)
eval_X, test_X, eval_y, test_y = train_test_split(evaluation_X, evaluation_y,
test_size=0.5, random_state=42)
results[l] = self.train_and_test(train_X,
train_y,
test_X,
test_y,
eval_X,
eval_y, output_size=number_of_labels,
hiddens=100, batch_size=batch_size)
return results
def train_and_test(self, train_X, train_y, test_X, test_y, eval_X, eval_Y, output_size, hiddens=100, batch_size=32):
train_dataset = ProbingDataset(train_X, train_y)
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_dataset = ProbingDataset(eval_X, eval_Y)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=True)
test_dataset = ProbingDataset(test_X, test_y)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
N = 10
name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N)) + ".pt"
mlp = MLPTrainer(self.embedding_size, output_size, hiddens, self.device)
return mlp.train(trainloader, validloader, testloader, name, epochs=100, patience=5)
class MLDProber:
"""
Prober based on MLD
"""
def __init__(self, embedding_size, device="cuda"):
self.embedding_size = embedding_size
self.device = device
def run(self, path, batch_size=32):
le = LabelEncoder()
with open(path, "rb") as filino:
c_data = pickle.load(filino)
loaded_data = {}
valid_loaded = {}
val_percentage = int(len(c_data["labels"]) * 0.10)
c_data["labels"] = le.fit_transform(c_data["labels"])
for key, value in c_data.items():
loaded_data[key] = c_data[key][val_percentage:]
valid_loaded[key] = c_data[key][:val_percentage]
layers = list(loaded_data.keys())
layers.remove("labels")
number_of_labels = len(set(c_data["labels"]))
portions = [0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.25, 12.5, 25, 100]
number_of_examples = len(loaded_data["labels"])
code_length_first_portion = int(portions[1] * number_of_examples / 100) * np.log2(number_of_labels)
results = {}
for l in layers:
sum_of_losses = 0
for index, p in enumerate(portions):
# we train on portion (i, i +1) and we test on
if p >= 25:
# from this point there is no other portion to train on
continue
train_start_index = int(portions[index] * number_of_examples / 100)
train_end_index = int(portions[index + 1] * number_of_examples / 100)
test_start_index = int(portions[index + 1] * number_of_examples / 100)
# just checking not to go beyond the 100%
if index > len(portions) - 2:
test_end_index = -1
else:
test_end_index = int(portions[index + 2] * number_of_examples / 100)
train_portion_X = loaded_data[l][train_start_index:train_end_index]
test_portion_X = loaded_data[l][test_start_index:test_end_index]
train_portion_y = loaded_data["labels"][train_start_index:train_end_index]
test_portion_y = loaded_data["labels"][test_start_index:test_end_index]
val_portion_X = valid_loaded[l]
val_portion_y = valid_loaded["labels"]
print(f"training on partition from {portions[index]} to {portions[index + 1]}, {train_start_index}:{train_end_index}, ")
print(f"testing on partition {portions[index + 1]} to the next one")
sum_of_losses += self.train_and_test(train_portion_X,
train_portion_y,
test_portion_X,
test_portion_y,
val_portion_X,
val_portion_y, output_size=number_of_labels,
hiddens=100, batch_size=batch_size)["loss"]
results[l] = {"code_length": code_length_first_portion, "sum_of_losses": sum_of_losses}
return results
def train_and_test(self, train_X, train_y, test_X, test_y, eval_X, eval_Y, output_size, hiddens=100, batch_size=32):
train_dataset = ProbingDataset(train_X, train_y)
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_dataset = ProbingDataset(eval_X, eval_Y)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=True)
test_dataset = ProbingDataset(test_X, test_y)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
N = 10
name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N)) + ".pt"
mlp = MLPTrainer(self.embedding_size, output_size, hiddens, self.device)
return mlp.train(trainloader, validloader, testloader, name, epochs=100, patience=5)