I2C MUX 5 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Nenad Filipovic
- Date : Nov 2020.
- Type : I2C type
This app reads "Who am I" and "Status" register of the connected Click boards to the I2C MUX 5 Click.
- MikroSDK.Board
- MikroSDK.Log
- Click.I2cMux5
i2cmux5_cfg_setup
Config Object Initialization function.
void i2cmux5_cfg_setup ( i2cmux5_cfg_t *cfg );
i2cmux5_init
Initialization function.
err_t i2cmux5_init ( i2cmux5_t *ctx, i2cmux5_cfg_t *cfg );
i2cmux5_default_cfg
Click Default Configuration function.
void i2cmux5_default_cfg ( i2cmux5_t *ctx );
i2cmux5_generic_write
I2C MUX 5 I2C writing function.
err_t i2cmux5_generic_write ( i2cmux5_t *ctx, uint8_t reg, uint8_t *tx_buf, uint8_t tx_len );
i2cmux5_generic_read
I2C MUX 5 I2C reading function.
err_t i2cmux5_generic_read ( i2cmux5_t *ctx, uint8_t reg, uint8_t *rx_buf, uint8_t rx_len );
i2cmux5_channel_read_byte
I2C MUX 5 I2C channel reading function.
uint8_t i2cmux5_channel_read_byte ( i2cmux5_t *ctx, uint8_t sel_ch, uint8_t ch_slave_addr, uint8_t reg );
Initializes I2C driver, set the default configuration and start to write log.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
i2cmux5_cfg_t i2cmux5_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "\r\n" );
log_info( &logger, " Application Init " );
// Click initialization.
i2cmux5_cfg_setup( &i2cmux5_cfg );
I2CMUX5_MAP_MIKROBUS( i2cmux5_cfg, MIKROBUS_1 );
err_t init_flag = i2cmux5_init( &i2cmux5, &i2cmux5_cfg );
if ( init_flag == I2C_MASTER_ERROR ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
i2cmux5_default_cfg ( &i2cmux5 );
log_info( &logger, " Application Task \r\n" );
Delay_ms ( 100 );
log_printf( &logger, "-------------------------------\r\n" );
log_printf( &logger, " I2C MUX 5 Click \r\n" );
log_printf( &logger, "-------------------------------\r\n" );
}
This is an example that demonstrates the use of the I2C MUX 5 Click board. In this example, we read "Who am I" ( or "Status" ) register of the connected Click boards to the I2C MUX 5 Click. Channel 1 : 6DOF IMU 9 Click [slave address: 0x69; reg: 0x75; ID val.: 0xA9], Channel 2 : 6DOF IMU 11 Click [slave address: 0x0E; reg: 0x00; ID val.: 0x2D], Channel 3 : RTC 10 Click [slave address: 0x68; reg: 0x0F; St val.: 0x88], Channel 4 : Accel 10 Click [slave address: 0x18; reg: 0x0F; ID val.: 0x44]. Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
rx_data = i2cmux5_channel_read_byte( &i2cmux5, I2CMUX5_CH_1, I2CMUX5_SET_6DOF_IMU_9_ADDR, 0x75 );
Delay_ms ( 1000 );
log_printf( &logger, " CH-1 6DOF IMU 9 Click : 0x%X \r\n", ( uint16_t )rx_data );
rx_data = i2cmux5_channel_read_byte( &i2cmux5, I2CMUX5_CH_2, I2CMUX5_SET_6DOF_IMU_11_ADDR, 0x00 );
Delay_ms ( 1000 );
log_printf( &logger, " CH-2 6DOF IMU 11 Click : 0x%X \r\n", ( uint16_t )rx_data );
rx_data = i2cmux5_channel_read_byte( &i2cmux5, I2CMUX5_CH_3, I2CMUX5_SET_RTC_10_ADDR, 0x0F );
Delay_ms ( 1000 );
log_printf( &logger, " CH-3 RTC 10 Click : 0x%X \r\n", ( uint16_t )rx_data );
rx_data = i2cmux5_channel_read_byte( &i2cmux5, I2CMUX5_CH_4, I2CMUX5_SET_ACCEL_10_ADDR, 0x0F );
Delay_ms ( 1000 );
log_printf( &logger, " CH-4 Accel 10 Click : 0x%X \r\n", ( uint16_t )rx_data );
log_printf( &logger, "-------------------------------\r\n" );
i2cmux5_hw_reset( &i2cmux5 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.