-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
116 lines (95 loc) · 4.25 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import streamlit as st
import pandas as pd
import plotly.express as px
st.set_page_config(layout="wide")
# DtypeWarning: Columns(61, 65, 74, 82, 83, 85) have mixed types.
from streamlit_plotly_events import plotly_events
@st.cache
def get_data():
columns = ['accession', 'gc_percentage', 'genome_size',
'gtdb_phylum', 'gtdb_class', 'gtdb_order',
'gtdb_family', 'gtdb_genus', 'gtdb_species',
'checkm_completeness', 'checkm_strain_heterogeneity', 'checkm_contamination',
'ncbi_assembly_level']
return pd.read_csv('bac120_metadata_r207_edited.csv.gz', usecols=columns)
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
st.markdown('# GTDB Genome Explorer')
df = get_data()
tax_options = ['gtdb_phylum', 'gtdb_class', 'gtdb_order',
'gtdb_family', 'gtdb_genus', 'gtdb_species']
filter_by = st.selectbox('Filter by', tax_options)
filter_value = st.selectbox('To keep', [''] + list(df[filter_by].unique()))
if filter_value:
fdf = df[df[filter_by] == filter_value]
if 'gc_points' not in st.session_state:
st.session_state['gc_points'] = []
if 'size_points' not in st.session_state:
st.session_state['size_points'] = []
st.markdown(f'## GC Percentage - {filter_value}')
display_options = ['accession', 'gtdb_species', 'gc_percentage', 'genome_size', 'checkm_completeness',
'checkm_strain_heterogeneity', 'checkm_contamination', 'ncbi_assembly_level']
gc_fig = px.strip(fdf, y='gc_percentage',
hover_data=display_options,
width=800, height=500)
#c1.plotly_chart(gc_fig, use_container_width=True)
selected_points = plotly_events(gc_fig, click_event=True, hover_event=False, select_event=True)
st.session_state['gc_points'] += selected_points
c1, c2 = st.columns((1, 2))
if c1.button('Clear'):
del st.session_state.gc_points
pt_ids = []
else:
pt_ids = [x['pointIndex'] for x in st.session_state.gc_points]
if pt_ids:
try:
pt_df = fdf.iloc[pt_ids].drop_duplicates()
st.write(pt_df)
csv = convert_df(pt_df)
c2.download_button(
label="Download data as CSV",
data=csv,
file_name=f'{filter_value}_gc_percentage.csv',
mime='text/csv',
)
except IndexError:
del st.session_state.gc_points
pt_ids = []
st.markdown(f'## Genome Size - {filter_value}')
# size_fig = px.histogram(fdf, x='gc_percentage', width=1000, height=500,
# hover_data=['gtdb_genus'])
#c2.plotly_chart( size_fig, use_container_width=True)
size_fig = px.strip(fdf, y='genome_size',
hover_data=display_options,
width=800, height=500)
size_selected_points = plotly_events(size_fig, click_event=True, hover_event=False, select_event=True)
st.session_state['size_points'] += size_selected_points
c3, c4 = st.columns((1, 2))
if c3.button('Clear', key='size'):
del st.session_state.size_points
size_pt_ids = []
else:
size_pt_ids = [x['pointIndex'] for x in st.session_state.size_points]
if size_pt_ids:
try:
size_df = fdf.iloc[size_pt_ids].drop_duplicates()
st.write(size_df)
csv = convert_df(size_df)
c4.download_button(
label="Download data as CSV",
data=csv,
file_name=f'{filter_value}_genome_size.csv',
mime='text/csv',
)
except IndexError:
del st.session_state.size_points
size_pt_ids = []
#c3.plotly_chart(size_fig, use_container_width=True)
# c4.plotly_chart(px.histogram(fdf, x='genome_size', width=1000, height=400,
# hover_data=['gtdb_genus']), use_container_width=True)
st.markdown(f'## Genome Size vs. GC - {filter_value}')
st.plotly_chart(px.scatter(fdf, x='genome_size', y='gc_percentage',
hover_data=display_options,
width=1000, height=600))