-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathReg_Monte.py
60 lines (45 loc) · 1.14 KB
/
Reg_Monte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Monte Carlo Valuation of a European Option in a Black-Scholes World
# by Michal Lyskawinski
# 10/31/2016
from math import *
import numpy as np
# Initialize parameters
S = 100
r = 0.06
sig = 0.2
T = 1
K = 100
N = 300
M = 100
div = 0.03 # In percentage
option = 'Put'
# Precompute constants
dt = T/N
nu = r - div - 0.5*(sig**2)
nudt = nu*dt
sigsdt = sig*sqrt(dt)
lnS = log(S)
sum_CT = 0
sum_CT2 = 0
for j in range(1,M): # For each simulation
lnST = lnS
for i in range(1,N):
eps = np.random.normal(0, 1)
lnST = lnST + nudt + sigsdt*eps
St = exp(lnST)
if option == 'Call':
CT = max(0, St - K)
sum_CT = sum_CT + CT
sum_CT2 = sum_CT2 + CT*CT
elif option == 'Put':
CT = max(0, K - St)
sum_CT = sum_CT + CT
sum_CT2 = sum_CT2 + CT * CT
else:
break
Value = sum_CT/M*exp(-r*T)
SD = sqrt((sum_CT2 - sum_CT*sum_CT/M)*exp(-2*r*T)/(M-1))
SE = SD/sqrt(M)
print('The Value of European',option,'Option is',Value)
print('The Standard Deviation of this Option is',SD)
print('The Standard Error in this case is',SE)