forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py
65 lines (60 loc) · 1.76 KB
/
simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
_base_ = [
'../_base_/datasets/imagenet_bs256_simmim_192.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='SimMIM',
backbone=dict(
type='SimMIMSwinTransformer',
arch='base',
img_size=192,
stage_cfgs=dict(block_cfgs=dict(window_size=6))),
neck=dict(
type='SimMIMLinearDecoder', in_channels=128 * 2**3, encoder_stride=32),
head=dict(
type='SimMIMHead',
patch_size=4,
loss=dict(type='PixelReconstructionLoss', criterion='L1', channel=3)))
# optimizer wrapper
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(
type='AdamW',
lr=2e-4 * 2048 / 512,
betas=(0.9, 0.999),
weight_decay=0.05),
clip_grad=dict(max_norm=5.0),
paramwise_cfg=dict(
custom_keys={
'norm': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-6 / 2e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=90,
eta_min=1e-5 * 2048 / 512,
by_epoch=True,
begin=10,
end=100,
convert_to_iter_based=True)
]
# runtime
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100)
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)