-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_kpcn.py
442 lines (369 loc) · 18.5 KB
/
train_kpcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Python
import os
import sys
import time
import visdom
import random
import itertools
from tqdm import tqdm
import matplotlib.pyplot as plt
from collections import OrderedDict
# NumPy and PyTorch
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# Cho et al. dependency
import configs
from support.networks import PathNet
from support.datasets import MSDenoiseDataset
from support.utils import BasicArgumentParser
from support.losses import RelativeMSE, FeatureMSE, GlobalRelativeSimilarityLoss
from support.interfaces import KPCNInterface, KPCNRefInterface, KPCNPreInterface
# Gharbi et al. dependency
sys.path.insert(1, configs.PATH_SBMC)
try:
from sbmc import KPCN
except ImportError as error:
print('Put appropriate paths in the configs.py file.')
raise
from ttools.modules.image_operators import crop_like
def train_epoch_kpcn(epoch, interfaces, dataloaders, params, args):
assert 'train' in dataloaders, "argument `dataloaders` dictionary should contain `'train'` key."
assert 'data_device' in params, "argument `params` dictionary should contain `'data_device'` key."
print('[][] Epoch %d' % (epoch))
for itf in interfaces:
itf.to_train_mode()
for batch in tqdm(dataloaders['train'], leave=False, ncols=70):
# Transfer data from the cpu to gpu memory
for k in batch:
if not batch[k].__class__ == torch.Tensor:
continue
batch[k] = batch[k].cuda(params['data_device'])
# Main
for itf in interfaces:
itf.preprocess(batch)
itf.train_batch(batch)
if not args.visual:
for itf in interfaces:
itf.get_epoch_summary(mode='train', norm=len(dataloaders['train']))
def validate_kpcn(epoch, interfaces, dataloaders, params, args):
assert 'val' in dataloaders, "argument `dataloaders` dictionary should contain `'train'` key."
assert 'data_device' in params, "argument `params` dictionary should contain `'data_device'` key."
print('[][] Validation (epoch %d)' % (epoch))
for itf in interfaces:
itf.to_eval_mode()
cnt = 0
summaries = []
with torch.no_grad():
for batch in tqdm(dataloaders['val'], leave=False, ncols=70):
# Transfer data from the cpu to gpu memory
for k in batch:
if not batch[k].__class__ == torch.Tensor:
continue
batch[k] = batch[k].cuda(params['data_device'])
# Main
for itf in interfaces:
itf.validate_batch(batch)
for itr in interfaces:
summaries.append(itf.get_epoch_summary(mode='eval', norm=len(dataloaders['val'])))
return summaries
def train(interfaces, dataloaders, params, args):
print('[] Experiment: `{}`'.format(args.desc))
print('[] # of interfaces : %d'%(len(interfaces)))
print('[] Model training start...')
# Start training
for epoch in range(args.start_epoch, args.num_epoch):
if len(interfaces) == 1:
save_fn = args.model_name + '.pth'
else:
raise NotImplementedError('Multiple interfaces')
start_time = time.time()
train_epoch_kpcn(epoch, interfaces, dataloaders, params, args)
print('[][] Elapsed time: %d'%(time.time() - start_time))
for i, itf in enumerate(interfaces):
tmp_params = params.copy()
tmp_params['vis'] = None
state_dict = {
'description': args.desc, #
'start_epoch': epoch + 1,
'model': str(itf.models['dncnn']),
'params': tmp_params,
'optims': itf.optims,
'args': args,
'best_err': itf.best_err
}
for model_name in itf.models:
state_dict['state_dict_' + model_name] = itf.models[model_name].state_dict()
if not args.not_save:
torch.save(state_dict, os.path.join(args.save, 'latest_' + save_fn))
# Validate models
if (epoch % args.val_epoch == args.val_epoch - 1):
print('[][] Validation')
summaries = validate_kpcn(epoch, interfaces, dataloaders, params, args)
for i, itf in enumerate(interfaces):
if summaries[i] < itf.best_err:
itf.best_err = summaries[i]
tmp_params = params.copy()
tmp_params['vis'] = None
state_dict = {
'description': args.desc, #
'start_epoch': epoch + 1,
'model': str(itf.models['dncnn']),
'params': tmp_params,
'optims': itf.optims,
'args': args,
'best_err': itf.best_err
}
for model_name in itf.models:
state_dict['state_dict_' + model_name] = itf.models[model_name].state_dict()
if not args.not_save:
torch.save(state_dict, os.path.join(args.save, save_fn))
print('[][] Model %s saved at epoch %d.'%(save_fn, epoch))
print('[][] Model {} RelMSE: {:.3f}e-3 \t Best RelMSE: {:.3f}e-3'.format(save_fn, summaries[i]*1000, itf.best_err*1000))
# Update schedulers
for key in params:
if 'sched_' in key:
params[key].step()
print('[] Training complete!')
"""
Main Utils
"""
def init_data(args):
# Initialize datasets
datasets = {}
datasets['train'] = MSDenoiseDataset(args.data_dir, 8, 'kpcn', 'train', args.batch_size, 'random',
use_g_buf=True, use_sbmc_buf=False, use_llpm_buf=args.use_llpm_buf, pnet_out_size=3)
datasets['val'] = MSDenoiseDataset(args.data_dir, 8, 'kpcn', 'val', BS_VAL, 'grid',
use_g_buf=True, use_sbmc_buf=False, use_llpm_buf=args.use_llpm_buf, pnet_out_size=3)
# Initialize dataloaders
dataloaders = {}
dataloaders['train'] = DataLoader(
datasets['train'],
batch_size=args.batch_size,
num_workers=1,
pin_memory=False,
)
dataloaders['val'] = DataLoader(
datasets['val'],
batch_size=BS_VAL,
num_workers=1,
pin_memory=False
)
return datasets, dataloaders
def init_model(dataset, args):
interfaces = []
lr_pnets = args.lr_pnet
pnet_out_sizes = args.pnet_out_size
w_manifs = args.w_manif
tmp = [lr_pnets, pnet_out_sizes, w_manifs]
for lr_pnet, pnet_out_size, w_manif in list(itertools.product(*tmp)):
# Initialize models (NOTE: modified for each model)
models = {}
if args.train_branches:
print('Train diffuse and specular branches indenpendently.')
else:
print('Post-train two branches of KPCN.')
if args.use_llpm_buf:
if args.disentangle in ['m10r01', 'm11r01']:
n_in = dataset['train'].dncnn_in_size - dataset['train'].pnet_out_size + pnet_out_size // 2
else:
n_in = dataset['train'].dncnn_in_size - dataset['train'].pnet_out_size + pnet_out_size
models['dncnn'] = KPCN(n_in)
print('Initialize KPCN for path descriptors (# of input channels: %d).'%(n_in))
n_in = dataset['train'].pnet_in_size
n_out = pnet_out_size
if args.train_branches:
print('Train PathNet backbones indenpendently for diffuse and specular branches (# of input channels: %d, # of output channels: %d).'%(n_in, n_out))
else:
print('Post-train PathNet backbones.')
models['backbone_diffuse'] = PathNet(ic=n_in, outc=n_out)
models['backbone_specular'] = PathNet(ic=n_in, outc=n_out)
else:
if args.kpcn_ref:
n_in = dataset['train'].dncnn_in_size + 3
else:
n_in = dataset['train'].dncnn_in_size
models['dncnn'] = KPCN(n_in)
print('Initialize KPCN for vanilla buffers (# of input channels: %d).'%(n_in))
# Load pretrained weights
if len(list(itertools.product(*tmp))) == 1:
model_fn = os.path.join(args.save, args.model_name + '.pth')
else:
model_fn = os.path.join(args.save, '%s_lp%f_pos%d_wgt%f.pth'%(args.model_name, lr_pnet, pnet_out_size, w_manif))
assert args.start_epoch != 0 or not os.path.isfile(model_fn), 'Model %s already exists.'%(model_fn)
is_pretrained = (args.start_epoch != 0) and os.path.isfile(model_fn)
if is_pretrained:
ck = torch.load(model_fn)
for model_name in models:
try:
models[model_name].load_state_dict(ck['state_dict_' + model_name])
except RuntimeError:
new_state_dict = OrderedDict()
for k, v in ck['state_dict_' + model_name].items():
name = k[7:]
new_state_dict[name] = v
models[model_name].load_state_dict(new_state_dict)
print('Pretraining weights are loaded.')
else:
print('Train models from scratch.')
# Use GPU parallelism if needed
if args.single_gpu:
print('Data Sequential')
for model_name in models:
models[model_name] = models[model_name].cuda(args.device_id)
else:
print('Data Parallel')
if torch.cuda.device_count() == 1:
print('Single CUDA machine detected')
for model_name in models:
models[model_name] = models[model_name].cuda()
elif torch.cuda.device_count() > 1:
print('%d CUDA machines detected' % (torch.cuda.device_count()))
for model_name in models:
models[model_name] = nn.DataParallel(models[model_name], output_device=1).cuda()
else:
assert False, 'No detected GPU device.'
# Initialize optimizers
optims = {}
for model_name in models:
lr = args.lr_dncnn if 'dncnn' == model_name else lr_pnet
optims['optim_' + model_name] = optim.Adam(models[model_name].parameters(), lr=lr)
if not is_pretrained:
continue
if 'optims' in ck:
state = ck['optims']['optim_' + model_name].state_dict()
elif 'optim_' + model_name in ck['params']:
state = ck['params']['optim_' + model_name].state_dict()
else:
print('No state for the optimizer for %s, use the initial optimizer and learning rate.'%(model_name))
continue
if not args.lr_ckpt:
print('Set the new learning rate %.3e for %s.'%(lr, model_name))
state['param_groups'][0]['lr'] = lr
else:
print('Use the checkpoint (%s) learning rate for %s.'%(model_fn, model_name))
optims['optim_' + model_name].load_state_dict(state)
# Initialize losses (NOTE: modified for each model)
loss_funcs = {
'l_diffuse': nn.L1Loss(),
'l_specular': nn.L1Loss(),
'l_recon': nn.L1Loss(),
'l_test': RelativeMSE()
}
if args.manif_learn:
if args.manif_loss == 'FMSE':
loss_funcs['l_manif'] = FeatureMSE(non_local = not args.local)
print('Manifold loss: FeatureMSE')
elif args.manif_loss == 'GRS':
loss_funcs['l_manif'] = GlobalRelativeSimilarityLoss()
print('Manifold loss: Global Relative Similarity')
else:
print('Manifold loss: None (i.e., ablation study)')
# Initialize a training interface (NOTE: modified for each model)
if args.kpcn_ref:
itf = KPCNRefInterface(models, optims, loss_funcs, args, train_branches=args.train_branches)
elif args.kpcn_pre:
itf = KPCNPreInterface(models, optims, loss_funcs, args, manif_learn=args.manif_learn, train_branches=args.train_branches)
else:
itf = KPCNInterface(models, optims, loss_funcs, args, visual=args.visual, use_llpm_buf=args.use_llpm_buf, manif_learn=args.manif_learn, w_manif=w_manif, train_branches=args.train_branches, disentanglement_option=args.disentangle)
if is_pretrained:
print('Use the checkpoint best error %.3e'%(args.best_err))
itf.best_err = args.best_err
interfaces.append(itf)
# Initialize a visdom visualizer object
params = {
'plots': {},
'data_device': 1 if torch.cuda.device_count() > 1 and not args.single_gpu else args.device_id,
}
if args.visual:
params['vis'] = visdom.Visdom(server='http://localhost')
else:
print('No visual.')
# Make the save directory if needed
if not os.path.isdir(args.save):
os.mkdir(args.save)
return interfaces, params
def main(args):
# Set random seeds
random.seed("Inyoung Cho, Yuchi Huo, Sungeui Yoon @ KAIST")
np.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = True #torch.backends.cudnn.deterministic = True
# Get ready
dataset, dataloaders = init_data(args)
interfaces, params = init_model(dataset, args)
train(interfaces, dataloaders, params, args)
if __name__ == "__main__":
""" NOTE: Example Training Scripts """
""" KPCN Vanilla
Train two branches (i.e., diffuse and specular):
python cp_train_kpcn.py --single_gpu --batch_size 8 --val_epoch 1 --data_dir /mnt/ssd3/iycho/KPCN --model_name KPCN_vanilla --desc "KPCN vanilla" --num_epoch 8 --lr_dncnn 1e-4 --train_branches
Post-joint training ('fine-tuning' according to the original authors):
python cp_train_kpcn.py --single_gpu --batch_size 8 --val_epoch 1 --data_dir /mnt/ssd3/iycho/KPCN --model_name KPCN_vanilla --desc "KPCN vanilla" --num_epoch 10 --lr_dncnn 1e-6 --start_epoch ?
"""
""" KPCN Manifold
Train two branches (i.e., diffuse and specular):
python cp_train_kpcn.py --single_gpu --batch_size 8 --val_epoch 1 --data_dir /mnt/ssd3/iycho/KPCN --model_name KPCN_manifold_FMSE --desc "KPCN manifold FMSE" --num_epoch 8 --manif_loss FMSE --lr_dncnn 1e-4 --lr_pnet 1e-4 --use_llpm_buf --manif_learn --w_manif 0.1 --train_branches
Post-joint training:
python cp_train_kpcn.py --single_gpu --batch_size 8 --val_epoch 1 --data_dir /mnt/ssd3/iycho/KPCN --model_name KPCN_manifold_FMSE --desc "KPCN manifold FMSE" --num_epoch 10 --manif_loss FMSE --lr_dncnn 1e-6 --lr_pnet 1e-6 --use_llpm_buf --manif_learn --w_manif 0.1 --start_epoch <best pre-training epoch>
"""
""" KPCN Path (ablation study)
Train two branches (i.e., diffuse and specular):
python cp_train_kpcn.py --single_gpu --batch_size 8 --val_epoch 1 --data_dir /mnt/ssd3/iycho/KPCN --model_name KPCN_path --desc "KPCN ablation study" --num_epoch 8 --lr_dncnn 1e-4 --lr_pnet 1e-4 --use_llpm_buf --train_branches
Post-joint training:
python cp_train_kpcn.py --single_gpu --batch_size 8 --val_epoch 1 --data_dir /mnt/ssd3/iycho/KPCN --model_name KPCN_path --desc "KPCN ablation study" --num_epoch 10 --lr_dncnn 1e-6 --lr_pnet 1e-6 --use_llpm_buf --start_epoch <best pre-training epoch>
"""
BS_VAL = 4 # validation set batch size
parser = BasicArgumentParser()
parser.add_argument('--desc', type=str, required=True,
help='short description of the current experiment.')
parser.add_argument('--lr_dncnn', type=float, default=1e-4,
help='learning rate of PathNet.')
parser.add_argument('--lr_pnet', type=float, nargs='+', default=[0.0001],
help='learning rate of PathNet.')
parser.add_argument('--lr_ckpt', action='store_true',
help='')
parser.add_argument('--best_err', type=float, required=False)
parser.add_argument('--pnet_out_size', type=int, nargs='+', default=[3],
help='# of channels of outputs of PathNet.')
parser.add_argument('--manif_loss', type=str, required=False,
help='`FMSE` or `GRS`')
parser.add_argument('--train_branches', action='store_true',
help='train the diffuse and specular branches independently.')
parser.add_argument('--use_llpm_buf', action='store_true',
help='use the llpm-specific buffer.')
parser.add_argument('--manif_learn', action='store_true',
help='use the manifold learning loss.')
parser.add_argument('--w_manif', type=float, nargs='+', default=[0.1],
help='ratio of the manifold learning loss to \
the reconstruction loss.')
parser.add_argument('--disentangle', type=str, default='m11r11',
help='`m11r11`, `m10r01`, `m10r11`, or `m11r01`')
parser.add_argument('--single_gpu', action='store_true',
help='use only one GPU.')
parser.add_argument('--device_id', type=int, default=0,
help='device id')
parser.add_argument('--kpcn_ref', action='store_true',
help='train KPCN-Ref model.')
parser.add_argument('--kpcn_pre', action='store_true',
help='train KPCN-Pre model.')
parser.add_argument('--not_save', action='store_true',
help='do not save checkpoint (debugging purpose).')
parser.add_argument('--local', action='store_true')
args = parser.parse_args()
if args.manif_learn and not args.use_llpm_buf:
raise RuntimeError('The manifold learning module requires a llpm-specific buffer.')
if args.manif_learn and not args.manif_loss:
raise RuntimeError('The manifold learning module requires a manifold loss.')
if not args.manif_learn and args.manif_loss:
raise RuntimeError('A manifold loss is not necessary when the manifold learning module is opted out.')
if args.manif_learn and args.manif_loss not in ['GRS', 'FMSE']:
raise RuntimeError('Argument `manif_loss` should be either `FMSE` or `GRS`')
if args.disentangle not in ['m11r11', 'm10r01', 'm10r11', 'm11r01']:
raise RuntimeError('Argument `disentangle` should be either `m11r11`, `m10r01`, `m10r11`, or `m11r01`')
for s in args.pnet_out_size:
if args.disentangle != 'm11r11' and s % 2 != 0:
raise RuntimeError('Argument `pnet_out_size` should be a list of even numbers')
main(args)