-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
33 lines (26 loc) · 1.28 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from utils import *
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
from tqdm import tqdm
from joblib import Parallel, delayed
def process_query(query, set_of_all_words, vectorizer, nbrs, list_of_words, alphabet):
if query in set_of_all_words:
return f'{query} 0'
_, indices = nbrs.kneighbors(vectorizer.transform([query]))
closest_words = [list_of_words[index] for index in indices[0]]
lite_result = find_lite(query, closest_words, alphabet)
if '3+' in lite_result or '404' in lite_result:
return find_brute(query, set_of_all_words, alphabet)
else:
return lite_result
def main():
set_of_all_words, list_of_all_queries, alphabet = get_data()
list_of_words = list(set_of_all_words)
vectorizer = TfidfVectorizer(
analyzer='char', ngram_range=(2, 3), strip_accents='unicode')
X = vectorizer.fit_transform(list_of_words)
nbrs = NearestNeighbors(n_neighbors=50, algorithm='auto', metric='cosine').fit(X)
result = Parallel(n_jobs=-1)(delayed(process_query)(query, set_of_all_words, vectorizer, nbrs, list_of_words, alphabet) for query in tqdm(list_of_all_queries, desc='Searching for closest words'))
save_to_file(result)
if __name__ == '__main__':
main()