diff --git a/pymialsrtk/interfaces/preprocess.py b/pymialsrtk/interfaces/preprocess.py index 436038f36..fabcb3030 100644 --- a/pymialsrtk/interfaces/preprocess.py +++ b/pymialsrtk/interfaces/preprocess.py @@ -2,9 +2,11 @@ # # This software is distributed under the open-source license Modified BSD. -""" PyMIALSRTK preprocessing functions including BTK Non-local-mean denoising, slice intensity correction +""" +PyMIALSRTK preprocessing functions including BTK Non-local-mean denoising, slice intensity correction slice N4 bias field correction, slice-by-slice correct bias field, intensity standardization, histogram normalization and both manual or deep learning based automatic brain extraction. + """ import os @@ -58,6 +60,7 @@ class BtkNLMDenoisingOutputSpec(TraitedSpec): out_file = File(desc='Output denoised image') class BtkNLMDenoising(BaseInterface): + """ Runs the non-local mean denoising module: implementation by Rousseau et al. [1]_ of the method proposed by Coupé et al. [2]_. @@ -93,7 +96,6 @@ class BtkNLMDenoising(BaseInterface): >>> nlmDenoise.inputs.weight = 0.2 >>> nlmDenoise.run() # doctest: +SKIP """ - input_spec = BtkNLMDenoisingInputSpec output_spec = BtkNLMDenoisingOutputSpec @@ -128,12 +130,13 @@ class MultipleBtkNLMDenoisingInputSpec(BaseInterfaceInputSpec): input_masks = InputMultiPath(File(desc='Input mask filenames', mandatory=False)) weight = traits.Float(0.1, desc='NLM smoothing parameter (0.1 by default)', usedefault=True) out_postfix = traits.Str("_nlm", desc='Suffix to be added to input image filenames to construst denoised output filenames',usedefault=True) - stacksOrder = traits.List(desc='Order of images index. To ensure images are processed with their correct corresponding mask', mandatory=False) + stacks_order = traits.List(desc='Order of images index. To ensure images are processed with their correct corresponding mask', mandatory=False) class MultipleBtkNLMDenoisingOutputSpec(TraitedSpec): output_images = OutputMultiPath(File(desc='Output denoised images')) class MultipleBtkNLMDenoising(BaseInterface): + """ Apply the non-local mean (NLM) denoising module on multiple inputs. NLM denoising implementation by Rousseau et al. [1]_ of the method proposed by Coupé et al. [2]_. @@ -155,7 +158,7 @@ class MultipleBtkNLMDenoising(BaseInterface): weight smoothing parameter (high beta produces smoother result, default is 0.1) - stacksOrder > + stacks_order > order of images index. To ensure images are processed with their correct corresponding mask. References @@ -177,7 +180,6 @@ class MultipleBtkNLMDenoising(BaseInterface): -------- pymialsrtk.interfaces.preprocess.BtkNLMDenoising """ - input_spec = MultipleBtkNLMDenoisingInputSpec output_spec = MultipleBtkNLMDenoisingOutputSpec @@ -239,6 +241,7 @@ class MialsrtkCorrectSliceIntensityOutputSpec(TraitedSpec): out_file = File(desc='Output image with corrected slice intensities') class MialsrtkCorrectSliceIntensity(BaseInterface): + """ Runs the MIAL SRTK mean slice intensity correction module [to_be_cited]. @@ -264,9 +267,7 @@ class MialsrtkCorrectSliceIntensity(BaseInterface): >>> sliceIntensityCorr.inputs.in_file = 'my_image.nii.gz' >>> sliceIntensityCorr.inputs.in_mask = 'my_mask.nii.gz' >>> sliceIntensityCorr.run() # doctest: +SKIP - - """ - + """ input_spec = MialsrtkCorrectSliceIntensityInputSpec output_spec = MialsrtkCorrectSliceIntensityOutputSpec @@ -301,6 +302,7 @@ class MultipleMialsrtkCorrectSliceIntensityOutputSpec(TraitedSpec): output_images = OutputMultiPath(File()) class MultipleMialsrtkCorrectSliceIntensity(BaseInterface): + """ Apply the MIAL SRTK slice intensity correction module [to_be_cited] on multiple images. Calls MialsrtkCorrectSliceIntensity interface with a list of images/masks. @@ -335,7 +337,6 @@ class MultipleMialsrtkCorrectSliceIntensity(BaseInterface): ------------ pymialsrtk.interfaces.preprocess.MialsrtkCorrectSliceIntensity """ - input_spec = MultipleMialsrtkCorrectSliceIntensityInputSpec output_spec = MultipleMialsrtkCorrectSliceIntensityOutputSpec @@ -395,6 +396,7 @@ class MialsrtkSliceBySliceN4BiasFieldCorrectionOutputSpec(TraitedSpec): out_fld_file = File(desc='Filename bias field extracted slice by slice from input image.') class MialsrtkSliceBySliceN4BiasFieldCorrection(BaseInterface): + """ Runs the MIAL SRTK slice by slice N4 bias field correction module that implements the method proposed by Tustison et al. [1]_. @@ -428,7 +430,6 @@ class MialsrtkSliceBySliceN4BiasFieldCorrection(BaseInterface): >>> N4biasFieldCorr.inputs.in_mask = 'my_mask.nii.gz' >>> N4biasFieldCorr.run() # doctest: +SKIP """ - input_spec = MialsrtkSliceBySliceN4BiasFieldCorrectionInputSpec output_spec = MialsrtkSliceBySliceN4BiasFieldCorrectionOutputSpec @@ -475,6 +476,7 @@ class MultipleMialsrtkSliceBySliceN4BiasFieldCorrectionOutputSpec(TraitedSpec): output_fields = OutputMultiPath(File()) class MultipleMialsrtkSliceBySliceN4BiasFieldCorrection(BaseInterface): + """ Runs on multiple images the MIAL SRTK slice by slice N4 bias field correction module that implements the method proposed by Tustison et al. [1]_. Calls MialsrtkSliceBySliceN4BiasFieldCorrection interface with a list of images/masks. @@ -518,7 +520,6 @@ class MultipleMialsrtkSliceBySliceN4BiasFieldCorrection(BaseInterface): .. [1] Tustison et al.; Medical Imaging, IEEE Transactions, 2010. `(link to paper) `_ """ - input_spec = MultipleMialsrtkSliceBySliceN4BiasFieldCorrectionInputSpec output_spec = MultipleMialsrtkSliceBySliceN4BiasFieldCorrectionOutputSpec @@ -574,6 +575,7 @@ class MialsrtkSliceBySliceCorrectBiasFieldOutputSpec(TraitedSpec): out_im_file = File(desc='Bias field corrected image') class MialsrtkSliceBySliceCorrectBiasField(BaseInterface): + """ Runs the MIAL SRTK independant slice by slice bias field correction module [To_be_cited]. @@ -607,7 +609,6 @@ class MialsrtkSliceBySliceCorrectBiasField(BaseInterface): >>> biasFieldCorr.inputs.in_field = 'my_field.nii.gz' >>> biasFieldCorr.run() # doctest: +SKIP """ - input_spec = MialsrtkSliceBySliceCorrectBiasFieldInputSpec output_spec = MialsrtkSliceBySliceCorrectBiasFieldOutputSpec @@ -643,6 +644,7 @@ class MultipleMialsrtkSliceBySliceCorrectBiasFieldOutputSpec(TraitedSpec): class MultipleMialsrtkSliceBySliceCorrectBiasField(BaseInterface): + """ Runs the MIAL SRTK slice by slice bias field correction module [to_be_cited] on multiple images. Calls MialsrtkSliceBySliceCorrectBiasField interface with a list of images/masks/fields. @@ -680,9 +682,7 @@ class MultipleMialsrtkSliceBySliceCorrectBiasField(BaseInterface): See also ------------ pymialsrtk.interfaces.preprocess.MialsrtkCorrectSliceIntensity - """ - input_spec = MultipleMialsrtkSliceBySliceCorrectBiasFieldInputSpec output_spec = MultipleMialsrtkSliceBySliceCorrectBiasFieldOutputSpec @@ -737,12 +737,13 @@ class MialsrtkIntensityStandardizationInputSpec(BaseInterfaceInputSpec): input_images = InputMultiPath(File(desc='files to be corrected for intensity', mandatory=True)) out_postfix = traits.Str("", desc='Suffix to be added to intensity corrected input_images', usedefault=True) in_max = traits.Float(desc='Maximal intensity',usedefault=False) - stacksOrder = traits.List(desc='Order of images index. To ensure images are processed with their correct corresponding mask', mandatory=False) # ToDo: Can be removed -> Also in pymialsrtk.pipelines.anatomical.srr.AnatomicalPipeline !!! + stacks_order = traits.List(desc='Order of images index. To ensure images are processed with their correct corresponding mask', mandatory=False) # ToDo: Can be removed -> Also in pymialsrtk.pipelines.anatomical.srr.AnatomicalPipeline !!! class MialsrtkIntensityStandardizationOutputSpec(TraitedSpec): output_images = OutputMultiPath(File()) class MialsrtkIntensityStandardization(BaseInterface): + """ Runs the MIAL SRTK intensity standardization module [To_be_cited]. Rescale image intensity by linear transformation @@ -769,7 +770,6 @@ class MialsrtkIntensityStandardization(BaseInterface): >>> intensityStandardization.inputs.input_images = ['image1.nii.gz','image2.nii.gz'] >>> intensityStandardization.run() # doctest: +SKIP """ - input_spec = MialsrtkIntensityStandardizationInputSpec output_spec = MialsrtkIntensityStandardizationOutputSpec @@ -806,7 +806,8 @@ class MialsrtkHistogramNormalizationInputSpec(BaseInterfaceInputSpec): bids_dir = Directory(desc='BIDS root directory', mandatory=True, exists=True) input_images = InputMultiPath(File(desc='Input image filenames to be normalized', mandatory=True)) input_masks = InputMultiPath(File(desc='Input mask filenames', mandatory=False)) - out_postfix = traits.Str("_histnorm", desc='Suffix to be added to normalized input image filenames to construct ouptut normalized image filenames', usedefault=True) + out_postfix = traits.Str("_histnorm", desc='Suffix to be added to normalized input image filenames to construct ouptut normalized image filenames', + usedefault=True) stacksOrder = traits.List(desc='Order of images index. To ensure images are processed with their correct corresponding mask', mandatory=False) @@ -815,6 +816,7 @@ class MialsrtkHistogramNormalizationOutputSpec(TraitedSpec): class MialsrtkHistogramNormalization(BaseInterface): + """ Runs the MIAL SRTK histogram normalizaton module that implements the method proposed by Nyúl et al. [1]_. @@ -849,8 +851,7 @@ class MialsrtkHistogramNormalization(BaseInterface): >>> histNorm.inputs.out_postfix = '_histnorm' >>> histNorm.inputs.stacksOrder = [0,1] >>> histNorm.run() # doctest: +SKIP - """ - + """ input_spec = MialsrtkHistogramNormalizationInputSpec output_spec = MialsrtkHistogramNormalizationOutputSpec @@ -913,6 +914,7 @@ class MialsrtkMaskImageOutputSpec(TraitedSpec): out_im_file = File(desc='Masked image') class MialsrtkMaskImage(BaseInterface): + """ Runs the MIAL SRTK mask image module. @@ -940,7 +942,6 @@ class MialsrtkMaskImage(BaseInterface): >>> maskImg.inputs.out_im_postfix = '_masked' >>> maskImg.run() # doctest: +SKIP """ - input_spec = MialsrtkMaskImageInputSpec output_spec = MialsrtkMaskImageOutputSpec @@ -975,6 +976,7 @@ class MultipleMialsrtkMaskImageOutputSpec(TraitedSpec): output_images = OutputMultiPath(File(desc='Output masked image filenames')) class MultipleMialsrtkMaskImage(BaseInterface): + """ Runs the MIAL SRTK mask image module on multiple images. Calls MialsrtkMaskImage interface with a list of images/masks. @@ -1013,8 +1015,7 @@ class MultipleMialsrtkMaskImage(BaseInterface): See also ------------ pymialsrtk.interfaces.preprocess.MialsrtkMaskImage - """ - + """ input_spec = MultipleMialsrtkMaskImageInputSpec output_spec = MultipleMialsrtkMaskImageOutputSpec @@ -1069,6 +1070,7 @@ class BrainExtractionOutputSpec(TraitedSpec): class BrainExtraction(BaseInterface): + """ Runs the automatic brain extraction module based on a 2D U-Net (Ronneberger et al. [1]_) using the pre-trained weights from Salehi et al. [2]_. @@ -1114,7 +1116,6 @@ class BrainExtraction(BaseInterface): >>> brainmask.inputs.out_postfix = '_brainMask.nii.gz' >>> brainmask.run() # doctest: +SKIP """ - input_spec = BrainExtractionInputSpec output_spec = BrainExtractionOutputSpec @@ -1141,7 +1142,7 @@ def _extractBrain(self, dataPath, modelCkptLoc, thresholdLoc, modelCkptSeg, thre """ - # Step1: Main part brain localization + ##### Step2: Brain localization ##### normalize = "local_max" width = 128 height = 128 @@ -1160,16 +1161,16 @@ def _extractBrain(self, dataPath, modelCkptLoc, thresholdLoc, modelCkptSeg, thre fy=height) if normalize: - if normalize == "local_max": - images[slice_counter, :, :, 0] = img_patch / np.max(img_patch) - elif normalize == "global_max": - images[slice_counter, :, :, 0] = img_patch / max_val - elif normalize == "mean_std": - images[slice_counter, :, :, 0] = (img_patch-np.mean(img_patch))/np.std(img_patch) - else: - raise ValueError('Please select a valid normalization') + if normalize == "local_max": + images[slice_counter, :, :, 0] = img_patch / np.max(img_patch) + elif normalize == "global_max": + images[slice_counter, :, :, 0] = img_patch / max_val + elif normalize == "mean_std": + images[slice_counter, :, :, 0] = (img_patch-np.mean(img_patch))/np.std(img_patch) + else: + raise ValueError('Please select a valid normalization') else: - images[slice_counter, :, :, 0] = img_patch + images[slice_counter, :, :, 0] = img_patch slice_counter += 1 @@ -1276,7 +1277,7 @@ def _extractBrain(self, dataPath, modelCkptLoc, thresholdLoc, modelCkptSeg, thre y_beg = med_y-half_max_y-border_y y_end = med_y+half_max_y+border_y - # Step2: Brain segmentation + ##### Step2: Brain segmentation ##### width = 96 height = 96 @@ -1287,12 +1288,12 @@ def _extractBrain(self, dataPath, modelCkptLoc, thresholdLoc, modelCkptSeg, thre img_patch = cv2.resize(image_data[x_beg:x_end, y_beg:y_end, ii], dsize=(width, height)) if normalize: - if normalize == "local_max": - images[slice_counter, :, :, 0] = img_patch / np.max(img_patch) - elif normalize == "mean_std": - images[slice_counter, :, :, 0] = (img_patch-np.mean(img_patch))/np.std(img_patch) - else: - raise ValueError('Please select a valid normalization') + if normalize == "local_max": + images[slice_counter, :, :, 0] = img_patch / np.max(img_patch) + elif normalize == "mean_std": + images[slice_counter, :, :, 0] = (img_patch-np.mean(img_patch))/np.std(img_patch) + else: + raise ValueError('Please select a valid normalization') else: images[slice_counter, :, :, 0] = img_patch @@ -1346,7 +1347,7 @@ def _extractBrain(self, dataPath, modelCkptLoc, thresholdLoc, modelCkptSeg, thre pred = conv_2d(conv9, 2, 1, activation='linear', padding='valid') with tf.Session(graph=g) as sess_test_seg: - # Restore the model + # Restore the model tf_saver = tf.train.Saver() tf_saver.restore(sess_test_seg, modelCkptSeg)