-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkernel_pca.py
50 lines (40 loc) · 1.51 KB
/
kernel_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
from ..kernels import RBF
class KernelPCA:
''' Kernel PCA
Parameters
----------
n_components : int,
Number of components to consider
kernel : callable,
kernel used
'''
def __init__(self,n_components,kernel=RBF()):
self.n_components = n_components
self.kernel = kernel
def _normalize(self,X,fit=True):
if fit :
self.mean = np.mean(X,axis=0)
return (X-self.mean)
def _compute_ktild(self,X,X_train):
K = self.kernel(X,X_train)
O = (np.eye(X.shape[0]) @ np.eye(X_train.shape[0]).T )/ X_train.shape[0]
K_tild = K - O @ K - K @ O + O @ K @O
return K_tild
def _fit(self,X,transform=True):
K_tild = self._compute_ktild(X,X)
eig_val,eig_vec = np.linalg.eig(K_tild) # Compute eigenvalues/vectors
eig_sort = np.argsort(abs(eig_val))[::-1][:self.n_components] # Sort by eigenvalues and take the biggest n_components
self.eigen_vec = np.real_if_close(eig_vec[:,eig_sort]/np.sqrt(eig_val[eig_sort]))
if transform :
return K_tild @ self.eigen_vec
def fit(self,X):
self.X = self._normalize(X,fit=True)
self._fit(self.X,transform=False)
def fit_transform(self,X):
self.X = self._normalize(X,fit=True)
return self._fit(self.X,transform=True)
def transform(self,X):
X = self._normalize(X,fit=False)
K_tild = self._compute_ktild(X,self.X)
return K_tild @ self.eigen_vec