-
Notifications
You must be signed in to change notification settings - Fork 209
/
Copy pathrombergQuadrature.m
88 lines (76 loc) · 2.27 KB
/
rombergQuadrature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
function [x, err] = rombergQuadrature(fun,tSpan,tol)
% [x, err] = rombergQuadrature(fun,tSpan,tol)
%
% Compute the integral(fun), over the domain tSpan, to an accuracy of tol,
% using Romberg quadrature. Fully vectorized.
%
% Good for high-accuracy quadrature over smooth vector functions.
%
% If necessary, this function will automatically sub-divide the interval to
% achieve the desired accuracy. This should only occur when fun is stiff or
% non-smooth.
%
% INPUTS:
% fun = vector function to be integrated
% dx = fun(t)
% t = [1, nt] = time vector
% dx = [nx, nt] = function value at each point in t
% tSpan = [tLow, tUpp] = time span (domain) for integration
% tol = [nx,1] = desired error tolerance along each dimension
%
% OUTPUT:
% x = [nx,1] = integral along each dimension
% err = [nx, 1] = error estimate along each dimension
%
% NOTES:
% algorithm from:
% http://www.math.usm.edu/lambers/mat460/fall09/lecture29.pdf
%
a = tSpan(1);
b = tSpan(2);
h = b-a;
f0 = fun(tSpan);
nx = size(f0,1);
if isscalar(tol)
tol = tol*ones(nx,1);
end
nMin = 4; % Complete at least this many iterations
nMax = 12; % Maximum iteration count
nSubSegment = 4; % Sub-divide segment if max iteration is reached
T = zeros(nMax,nMax,nx); % (iteration, extrapolation, dimension)
Err = zeros(nMax,nx); %(extrapolation, dimension)
T(1,1,:) = 0.5*h*sum(f0,2);
h = h/2;
converged = false;
for j=2:nMax
% Trapazoid method
i = 1:2^(j-2);
t = a+h*(2*i-1);
f = fun(t);
T(j,1,:) = 0.5*T(j-1,1,:) + reshape(h*sum(f,2),1,1,nx);
% Richardson extrapolation
for k=2:j
T(j,k,:) = T(j,k-1,:) + ...
( 1/(4^(k-1)-1) )*( T(j,k-1,:) - T(j-1,k-1,:) );
end
h = h/2;
% Check the error estimate for convergence
Err(j,:) = T(j,k,:) - T(j-1,k-1,:);
err = abs(Err(j,:))';
if all( err < tol ) && j > nMin
converged = true;
break;
end
end
x = reshape(T(j,j,:),nx,1);
if ~converged %Then non-smooth problem. Recursively sub-divide interval.
time = linspace(tSpan(1), tSpan(2), nSubSegment+1);
x = zeros(nx,1);
err = zeros(nx,1);
for i=1:nSubSegment
[xTmp, errTmp] = rombergQuadrature(fun,time([i, i+1]),tol);
x = x + xTmp;
err = max(err,errTmp);
end
end
end