-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathL-11_Sieve-of-Eratosthenes_CountSemiPrimes.js
64 lines (56 loc) · 1.71 KB
/
L-11_Sieve-of-Eratosthenes_CountSemiPrimes.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// Count the semiprime numbers in the given range [a..b]
// Problem description: https://app.codility.com/programmers/lessons/11-sieve_of_eratosthenes/count_semiprimes/
// Detected complexity: O(N * log(log(N)) + M)
// For explanation see https://www.youtube.com/watch?v=I75k47yigd0
function solution(N, P, Q) {
// array index = number
var primesArr = [];
var semiPrimesArr = [];
for (let i = 2; i < N + 1; i++) {
primesArr[i] = true;
semiPrimesArr[i] = 0;
}
// 0 and 1 are not prime numbers
primesArr[0] = primesArr[1] = false;
semiPrimesArr[0] = semiPrimesArr[1] = 0;
let i = 2;
// Only need to remove (set to false) multiples of consecutive numbers <= sqrt of n
while (i * i <= N) {
// >>> if solution[i] - it is a prime number - others will be set to false
if (primesArr[i]) {
// e.g. If i = 3, only need to start removing multiples of i starting at 3 * 3 = 9
// because smaller numbers that are not prime numbers would already be removed
let k = i * i;
while (k <= N) {
primesArr[k] = false;
k += i;
}
}
i++;
}
// calculate semi primes
for (let i = 2; i < N + 1; i++) {
for (let j = 0; j < N + 1; j++) {
if (primesArr[i] && primesArr[j] && i * j <= N) {
semiPrimesArr[i * j] = 1;
}
if (i * j > N) {
break;
}
}
}
// cummulative count of semi primes
var semiPrimesCount = Array(N + 1).fill(0);
let count = 0;
for (let i = 2; i < N + 1; i++) {
if (semiPrimesArr[i]) {
count++;
}
semiPrimesCount[i] = count;
}
var result = [];
for (let i = 0; i < P.length; i++) {
result.push(semiPrimesCount[Q[i]] - semiPrimesCount[P[i] - 1]);
}
return result;
}