-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_v2.py
90 lines (69 loc) · 3.81 KB
/
predict_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
# coding: utf-8
# ---- Library import ----
from torch.utils.data import DataLoader
# ---- My utils ----
from models import *
from utils.arguments import *
from utils.data_augmentation import data_augmentation_selector
from utils.dataload import dataset_selector, save_nii
from utils.entropy import *
from utils.testing import *
warnings.filterwarnings('ignore')
if __name__ == "__main__":
os.makedirs(args.output_data_directory, exist_ok=True)
if args.eval_overlays:
os.makedirs(os.path.join(args.output_data_directory, "preds_overlays"), exist_ok=True)
aug, aug_img, _ = data_augmentation_selector(args.data_augmentation, args.img_size, args.crop_size)
if args.segmentator_checkpoint != "":
segmentator = model_selector(args.segmentator_model_name, in_channels=1)
segmentator = torch.nn.DataParallel(segmentator, device_ids=range(torch.cuda.device_count()))
segmentator.load_state_dict(torch.load(args.segmentator_checkpoint))
print("Loaded Segmentator from pretrained checkpoint: {}".format(args.segmentator_checkpoint))
else:
assert False, "Please specify a model checkpoint!"
if args.discriminator_checkpoint != "":
discriminator = model_selector(args.discriminator_model_name, in_channels=1, num_classes=3)
discriminator = torch.nn.DataParallel(discriminator, device_ids=range(torch.cuda.device_count()))
discriminator.load_state_dict(torch.load(args.discriminator_checkpoint))
print("Loaded Discriminator from pretrained checkpoint: {}".format(args.discriminator_checkpoint))
else:
assert False, "Please specify a model checkpoint!"
# We want to adapt all images to B
target = target_generator(args.target)
image_modificator_fn = ImageBackwardEntropy(
discriminator, target, max_iters=args.max_iters,
out_threshold=args.out_threshold, entropy_lambda=args.entropy_lambda, verbose=False,
add_l1=args.add_l1, l1_lambda=args.l1_lambda, add_blur_param=args.add_blur_param, blur_lambda=args.blur_lambda,
add_unblur_param=args.add_unblur_param, unblur_lambda=args.unblur_lambda,
add_gamma_param=args.add_gamma_param, gamma_lambda=args.gamma_lambda,
)
test_dataset = dataset_selector(None, None, aug, args)
test_loader = DataLoader(
test_dataset, batch_size=1, shuffle=False,
drop_last=False, collate_fn=test_dataset.simple_collate
)
segmentator.eval()
for (ed_volume, es_volume, img_affine, img_header, img_shape, img_id, original_ed, original_es) in test_loader:
ed_volume = ed_volume.type(torch.float).cuda()
es_volume = es_volume.type(torch.float).cuda()
ed_volume = image_modificator_fn.apply_volume(ed_volume)
es_volume = image_modificator_fn.apply_volume(es_volume)
with torch.no_grad():
prob_pred_ed = segmentator(ed_volume)
prob_pred_es = segmentator(es_volume)
pred_ed = binarize_volume_prediction(prob_pred_ed, img_shape) # [slices, height, width]
pred_es = binarize_volume_prediction(prob_pred_es, img_shape) # [slices, height, width]
pred_ed = pred_ed.transpose(1, 2, 0) # [height, width, slices]
pred_es = pred_es.transpose(1, 2, 0) # [height, width, slices]
save_nii(
os.path.join(args.output_data_directory, "{}_sa_ED.nii.gz".format(img_id)),
pred_ed, img_affine, img_header
)
save_nii(
os.path.join(args.output_data_directory, "{}_sa_ES.nii.gz".format(img_id)),
pred_es, img_affine, img_header
)
if args.eval_overlays_path != "none":
plot_save_pred_volume(original_ed, pred_ed, args.eval_overlays_path, "{}_ed".format(img_id))
plot_save_pred_volume(original_ed, pred_ed, args.eval_overlays_path, "{}_es".format(img_id))