-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPlots.py
46 lines (39 loc) · 2.34 KB
/
Plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# -*- coding: utf-8 -*-
"""
Created on Mon May 18 10:37:58 2020
@author: jakob
"""
import pandas as pd
import matplotlib.pyplot as plt
def run_plots(ingredients_level_total, ingredients_levels):
inventory_levels_dataframes = dict.copy(dict.fromkeys(ingredients_levels.keys() ))
inventory_level_total_df = pd.DataFrame(ingredients_level_total, columns = dict.fromkeys(ingredients_level_total.keys() ))
inventory_level_total_df["level"] = inventory_level_total_df["level"] / 1000
inventory_level_total_df["time"] = inventory_level_total_df["time"] / 60
for k,v in ingredients_levels.items():
inventory_levels_dataframes[k] = pd.DataFrame(ingredients_levels[k], columns = dict.fromkeys(ingredients_levels[k].keys() ))
inventory_levels_dataframes[k]["level"] = inventory_levels_dataframes[k]["level"] / 1000
inventory_levels_dataframes[k]["time"] = inventory_levels_dataframes[k]["time"] / 60
inventory_level_total_df.plot(kind = "line", x = "time", y = "level",)
mean = round(inventory_level_total_df["level"].mean(), 2)
[ymin, ymax] = plt.gca().get_ylim()
ax = plt.gca()
ax.set_xlabel("time in hours")
ax.set_ylabel("inventory levels in kg")
for k,v in inventory_levels_dataframes.items():
inventory_levels_dataframes[k].plot(kind = "line", x= "time", y= "level", label = str(k)).set_ylim(ymin, ymax)
mean = round(inventory_levels_dataframes[k]["level"].mean(), 2)
ax = plt.gca()
ax.text(0, ymax - ymax*0.1, 'mean levels = ' + str(mean) + " kg", style='italic',
bbox={'facecolor': 'red', 'alpha': 1, 'pad': 10},
verticalalignment='top', horizontalalignment='left',)
ax.set_xlabel("time in hours")
ax.set_ylabel("inventory levels in kg")
inventory_level_total_first_weeks = inventory_level_total_df[0:(5*168)]
inventory_level_total_first_weeks.plot(kind = "line", x = "time", y = "level", label = "week 1 to 5").set_ylim(ymin, ymax)
plt.gca().set_xlabel("time in hours")
plt.gca().set_ylabel("inventory levels in kg")
inventory_level_total_last_weeks = inventory_level_total_df[-5:-1*168]
inventory_level_total_last_weeks.plot(kind = "line", x = "time", y = "level", label = "week 48 to 53").set_ylim(ymin, ymax)
plt.gca().set_xlabel("time in hours")
plt.gca().set_ylabel("inventory levels in kg")