-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsched_sim.cc
242 lines (201 loc) · 6.94 KB
/
sched_sim.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//#include <unistd.h>
//#include <stdio.h>
//#include <stdlib.h>
//#include <string.h>
//#include <time.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <map>
#include <semaphore>
#include <sstream>
#include <thread>
#include <vector>
#include "rt.h"
#include "sched_sim_tracepoint.h"
#include "task.h"
using namespace std::chrono_literals;
using time_point = std::chrono::time_point<std::chrono::steady_clock>;
using duration = typename std::chrono::nanoseconds;
struct Job {
int _id;
duration _execution_time;
time_point _deadline;
time_point _submission_time;
int _task_id;
};
using SimTask = Task<Job>;
void wait_busily(Job job) {
time_point thread_end = thread_now() + job._execution_time;
while (thread_now() < thread_end) {
/* spin */
}
}
struct Model {
std::map<int, SimTask*> _tasks;
std::vector<Job> _jobs;
int _n_cores = 1;
bool _prediction_enabled = false;
time_point _start = time_point(0us);
void add_task(SimTask *task) {
this->_tasks[task->id()] = task;
}
void calculate_deadlines() {
std::map<int, std::vector<Job *>> tasks_jobs;
for (Job &j: this->_jobs) {
tasks_jobs[j._task_id].push_back(&j);
}
time_point zero(0us);
for (auto &[task_id, jobs]: tasks_jobs) {
if (not this->_tasks.contains(task_id)) {
std::cerr << "Input Error: unresolvable task id: " << task_id << std::endl;
exit(EXIT_FAILURE);
}
SimTask *task = this->_tasks[task_id];
int i = 1;
for (Job *job: jobs) {
job->_deadline = zero + (task->period() * i);
job->_id = i - 1;
//std::cerr << "calculate job " << i << " of task " << task_id << ". submission: "
// << job->_submission_time.time_since_epoch() / 1us << ". deadline: "
// << job->_deadline.time_since_epoch() / 1us << ". execution_time: "
// << job->_execution_time / 1us << std::endl;
++i;
}
}
}
void set_start_time(time_point start) {
this->_start = start;
for (Job &job: this->_jobs) {
job._deadline += start.time_since_epoch();
job._submission_time += start.time_since_epoch();
}
}
void sort_jobs() {
std::sort(this->_jobs.begin(), this->_jobs.end(),
[](const Job &a, const Job &b){
return a._submission_time < b._submission_time;
});
}
};
static Job parse_job(std::stringstream *ss) {
int id;
int execution_time;
int submission_time;
int task_id;
*ss >> id >> execution_time >> submission_time >> task_id;
return Job(id, execution_time * 1us, time_point{0us}, time_point{submission_time * 1us},
task_id);
}
static SimTask *parse_task(std::stringstream *ss, Model *model) {
int id;
int execution_time;
int period;
*ss >> id >> execution_time >> period;
std::vector<unsigned> cpus = {0};
return new SimTask(id, period * 1us, wait_busily, cpus);
}
static void parse_line(std::string line, Model *model) {
std::stringstream ss(line);
char type = ' ';
/* first char in each line specifies type of line to parse */
ss >> type;
switch (type) {
break; case 'c': ss >> model->_n_cores;
break; case 'j': model->_jobs.push_back(parse_job(&ss));
break; case 'S': model->add_task(parse_task(&ss, model));
break; case ' ':
break; case 0:
break; case '#':
break; default: std::cerr << "Parse error: \"" << type << "\" is not a proper type."
<< std::endl;
exit(EXIT_FAILURE);
}
}
static struct Model parse_input(std::string path, bool prediction_enabled) {
std::ifstream input_file(path);
if (not input_file.is_open()) {
std::cerr << "Could not open file: " << path << std::endl;
exit(EXIT_FAILURE);
}
Model model;
model._prediction_enabled = prediction_enabled;
std::string line;
while (std::getline(input_file, line)) {
parse_line(line, &model);
}
input_file.close();
model.calculate_deadlines();
return model;
}
int main(int argc, char *argv[]) {
lttng_ust_tracepoint(sched_sim, start_main);
/* put the job spawning onto CPU 7 */
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(7,&set);
int ret;
ret = sched_setaffinity(0, sizeof(set), &set);
if (ret < 0) {
perror("sched_setaffinity");
exit(-1);
}
lttng_ust_tracepoint(sched_sim, migrated, 1);
/* configure deadline scheduling */
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = SCHED_FIFO;
attr.sched_policy = SCHED_FIFO;
ret = sched_setattr(0, &attr, flags);
if (ret < 0) {
perror("sched_setattr");
exit(-1);
}
if (argc <= 1) {
std::cerr << "no input file provided. Exiting." << std::endl;
exit(1);
}
bool prediction_enabled = false;
if (argc > 2 && std::string(argv[2]) == "1") {
prediction_enabled = true;
}
Model model = parse_input(argv[1], prediction_enabled);
lttng_ust_tracepoint(sched_sim, input_parsed);
/* Allow tasks to initialise */
std::this_thread::sleep_for(3ms);
lttng_ust_tracepoint(sched_sim, waited_for_task_init);
/* wait at least one period for every task */
duration initial_wait =
std::max_element(model._tasks.begin(), model._tasks.end(),
[](std::pair<int, SimTask *> a, std::pair<int, SimTask *> b) {
return a.second->period() < b.second->period();
})->second->period();
model.set_start_time(std::chrono::steady_clock::now() + initial_wait);
/* spawn jobs */
model.sort_jobs();
time_point now = std::chrono::steady_clock::now();
for (Job &job: model._jobs) {
if (job._submission_time - now > 1ms) {
//std::cerr << "sleep_until " << job._submission_time.time_since_epoch() / 1us << std::endl;
std::this_thread::sleep_until(job._submission_time - 1ms);
//std::cerr << "slept. Its now " << std::chrono::steady_clock::now().time_since_epoch() / 1us << std::endl;
}
/* busy wait if next spawn is in future */
while (job._submission_time > now) {
now = std::chrono::steady_clock::now();
}
/* spawn job */
SimTask *task = model._tasks[job._task_id];
lttng_ust_tracepoint(sched_sim, job_spawn, task->id(), job._id, (job._deadline - now.time_since_epoch()).time_since_epoch() / 1ns);
task->add_job(job);
task->sem().release();
}
for (auto &[_, task]: model._tasks) {
task->sem().release();
task->join();
}
return 0;
}