-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
173 lines (147 loc) · 6.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import random
import os
from datetime import datetime
import wandb
import torch
from peft import LoraConfig, TaskType, get_peft_model
from accelerate import Accelerator
from accelerate import DistributedDataParallelKwargs
from accelerate import DataLoaderConfiguration
from gato.utils.typed_argparser import TypedArgumentParser
from gato.training.arguments import TrainingArgs
from gato.policy.gato_policy import GatoPolicy
from gato.envs.setup_env import load_envs
from gato.training.trainer import Trainer
from gato.training.schedulers import get_linear_warmup_cosine_decay_scheduler
from gato.tasks.control_task import ControlTask
from gato.tasks.text_task import TextTask
from gato.tasks.caption_task import CaptionTask
from gato.tasks.vqa_task import VqaTask
def main(args):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
if args.use_wandb:
log_with = 'wandb'
else:
log_with = None
dl_config = DataLoaderConfiguration(split_batches=True)
accelerator = Accelerator(
cpu=args.cpu,
dataloader_config=dl_config,
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps,
kwargs_handlers=[ddp_kwargs],
log_with=log_with
)
args.device = accelerator.device.type
exp_date = datetime.now().strftime('%y-%m-%d_%H-%M-%S')
exp_name = f'neko-gato_{exp_date}'
tasks = []
# add control datasets and env
envs, control_datasets = load_envs(args.control_datasets) # Load Minari datasets and corresponding Gym environments
for env, dataset in zip(envs, control_datasets):
task = ControlTask(
env.unwrapped.spec.id,
env,
dataset,
args = args,
context_len = args.sequence_length,
training_prompt_len_proportion=args.prompt_len_proportion,
share_prompt_episodes = not args.unique_prompt_episodes,
top_k_prompting = args.top_k
)
tasks.append(task)
if len(args.text_datasets) > 0:
# add text datasets
tasks.append(TextTask(args.text_datasets, args.text_datasets_paths, args.sequence_length, tokenizer_model=args.tokenizer_model_name))
else:
assert (args.text_prop == 0), 'text_prop must be 0 if no text datasets are specified'
if len(args.caption_dataset) > 0:
# add caption datasets
tasks.append(CaptionTask(args.tokenizer_model_name, args.caption_dataset, args.caption_train_data, args.caption_test_data, args.test_data_prop))
else:
assert (args.caption_prop == 0), 'caption_prop must be 0 if no text datasets are specified'
if len(args.vqa_dataset) > 0:
# add vqa datasets
tasks.append(VqaTask(args.tokenizer_model_name,
args.vqa_dataset, args.vqa_train_data, args.vqa_test_data,
args.train_img_name_prefix, args.train_img_file_name_len,
args.test_img_name_prefix, args.test_img_file_name_len,
args.questions_file, args.annotations_file))
else:
assert (args.vqa_prop == 0), 'vqa_prop must be 0 if no text datasets are specified'
model = GatoPolicy(
device=args.device,
embed_dim=args.embed_dim,
layers=args.layers,
heads=args.heads,
dropout=args.dropout,
mu=args.mu,
M=args.M,
patch_size=args.patch_size,
resid_mid_channels=args.resid_mid_channels,
continuous_tokens=args.continuous_tokens,
discrete_tokens=args.discrete_tokens,
context_len=args.sequence_length,
use_patch_pos_encoding=not args.disable_patch_pos_encoding,
use_pos_encoding=not args.disable_inner_pos_encoding,
activation_fn=args.activation_fn,
pretrained_lm=args.pretrained_lm,
flash=args.flash,
tokenizer_model_name=args.tokenizer_model_name,
pad_seq=args.pad_seq,
)
args.embed_dim = model.embed_dim
model = accelerator.prepare(model)
if args.lora:
assert args.pretrained_lm is not None, 'Must specify pretrained LM for LORA'
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=args.lora_r, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout)
model.transformer = get_peft_model(model.transformer, peft_config)
if args.init_checkpoint is not None:
with accelerator.main_process_first():
print('Loading model from checkpoint:', args.init_checkpoint)
model.load_state_dict(torch.load(args.init_checkpoint, map_location=args.device))
# print trainable parameters
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Trainable Parameters:', '{}M'.format(params / 1e6))
args.trainable_params = params
model.device = args.device
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.beta_1, args.beta_2),
eps=args.adam_eps,
weight_decay=args.weight_decay,
)
# Setup scheduler
scheduler = get_linear_warmup_cosine_decay_scheduler(optimizer, args.warmup_steps, args.training_steps, base_lr=args.learning_rate, init_lr=args.init_lr, min_lr=args.learning_rate / args.min_factor, cosine_decay=not args.disable_cosine_decay)
# setup up Accelerate, without dataloader:
#model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler)
optimizer, scheduler = accelerator.prepare(optimizer, scheduler)
if args.use_wandb:
accelerator.init_trackers(args.wandb_project, init_kwargs={'wandb': {'name': exp_name, 'config': args}})
else:
accelerator.init_trackers('')
# Create save dir if does not exist
if args.save_model and not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
trainer = Trainer(
model = model,
optimizer = optimizer,
scheduler = scheduler,
accelerator = accelerator,
tasks = tasks,
exp_name = exp_name,
args=args
)
trainer.train()
if __name__ == '__main__':
parser = TypedArgumentParser(TrainingArgs)
(args,) = parser.parse_args_into_dataclasses()
# Checks
assert args.training_steps % args.log_eval_freq == 0, 'training_steps must be divisible by eval_freq'
assert args.training_steps > args.warmup_steps, 'training_steps must be greater than warmup_steps'
assert args.learning_rate > args.init_lr, 'learning_rate must be greater than init_lr'
# make sure proportions are between 0 and 1
assert 0 <= args.prompt_ep_proportion <= 1, 'prompt_ep_proportion must be between 0 and 1'
assert 0 <= args.prompt_len_proportion <= 1, 'prompt_len_proportion must be between 0 and 1'
main(args)