本教程将介绍基于Paddle Lite在移动端部署 PaddleClas 分类模型的详细步骤。识别模型的部署将在近期支持,敬请期待。
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。
Paddle Lite 目前支持以下平台部署:
- 电脑(编译Paddle Lite)
- 安卓手机(armv7或armv8)
交叉编译环境用于编译 Paddle Lite 和 PaddleClas 的 C++ demo。 支持多种开发环境,关于 Docker、Linux、macOS、Windows 等不同开发环境的编译流程请参考文档。
预测库有两种获取方式:
-
[建议]直接下载,预测库下载链接如下:
平台 预测库下载链接 Android arm7 / arm8 iOS arm7 / arm8 注:
- 如果是从 Paddle-Lite 官方文档下载的预测库,
注意选择
with_extra=ON,with_cv=ON
的下载链接。 - 如果使用量化的模型部署在端侧,建议使用 Paddle-Lite develop 分支编译预测库。
- 如果是从 Paddle-Lite 官方文档下载的预测库,
注意选择
-
编译 Paddle-Lite 得到预测库,Paddle-Lite 的编译方式如下:
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
# 如果使用编译方式,建议使用develop分支编译预测库
git checkout develop
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
注意:编译Paddle-Lite获得预测库时,需要打开--with_cv=ON --with_extra=ON
两个选项,--arch
表示arm
版本,这里指定为armv8,更多编译命令介绍请参考链接。
直接下载预测库并解压后,可以得到inference_lite_lib.android.armv8/
文件夹,通过编译Paddle-Lite得到的预测库位于Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/
文件夹下。
预测库的文件目录如下:
inference_lite_lib.android.armv8/
|-- cxx C++ 预测库和头文件
| |-- include C++ 头文件
| | |-- paddle_api.h
| | |-- paddle_image_preprocess.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| `-- lib C++预测库
| |-- libpaddle_api_light_bundled.a C++静态库
| `-- libpaddle_light_api_shared.so C++动态库
|-- java Java预测库
| |-- jar
| | `-- PaddlePredictor.jar
| |-- so
| | `-- libpaddle_lite_jni.so
| `-- src
|-- demo C++和Java示例代码
| |-- cxx C++ 预测库demo
| `-- java Java 预测库demo
Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合精度、Kernel 优选等方法,使用 Paddle-Lite 的 opt
工具可以自动对 inference 模型进行优化,目前支持两种优化方式,优化后的模型更轻量,模型运行速度更快。在进行模型优化前,需要先准备 opt
优化工具,有以下两种方式。
注意:如果已经准备好了 .nb
结尾的模型文件,可以跳过此步骤。
Python下安装 paddlelite
,目前最高支持 Python3.7
。
注意:paddlelite
whl包版本必须和预测库版本对应。
pip install paddlelite==2.8
之后使用 paddle_lite_opt
工具可以进行 inference 模型的转换。paddle_lite_opt
的部分参数如下
选项 | 说明 |
---|---|
--model_dir | 待优化的PaddlePaddle模型(非combined形式)的路径 |
--model_file | 待优化的PaddlePaddle模型(combined形式)的网络结构文件路径 |
--param_file | 待优化的PaddlePaddle模型(combined形式)的权重文件路径 |
--optimize_out_type | 输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf |
--optimize_out | 优化模型的输出路径 |
--valid_targets | 指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm |
--record_tailoring_info | 当使用 根据模型裁剪库文件 功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false |
--model_file
表示 inference 模型的 model 文件地址,--param_file
表示 inference 模型的 param 文件地址;optimize_out
用于指定输出文件的名称(不需要添加 .nb
的后缀)。直接在命令行中运行 paddle_lite_opt
,也可以查看所有参数及其说明。
模型优化需要 Paddle-Lite 的 opt
可执行文件,可以通过编译 Paddle-Lite 源码获得,编译步骤如下:
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout develop
# 启动编译
./lite/tools/build.sh build_optimize_tool
编译完成后,opt
文件位于 build.opt/lite/api/
下,可通过如下方式查看 opt
的运行选项和使用方式:
cd build.opt/lite/api/
./opt
opt
的使用方式与参数与上面的 paddle_lite_opt
完全一致。
下面以PaddleClas的 MobileNetV3_large_x1_0
模型为例,介绍使用 paddle_lite_opt
完成预训练模型到inference模型,再到 Paddle-Lite 优化模型的转换。
# 进入PaddleClas根目录
cd PaddleClas_root_path
# 下载并解压inference模型
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
tar -xf MobileNetV3_large_x1_0_infer.tar
# 将inference模型转化为Paddle-Lite优化模型
paddle_lite_opt --model_file=./MobileNetV3_large_x1_0_infer/inference.pdmodel --param_file=./MobileNetV3_large_x1_0_infer/inference.pdiparams --optimize_out=./MobileNetV3_large_x1_0
最终在当前文件夹下生成 MobileNetV3_large_x1_0.nb
的文件。
注意:--optimize_out
参数为优化后模型的保存路径,无需加后缀 .nb
;--model_file
参数为模型结构信息文件的路径,--param_file
参数为模型权重信息文件的路径,请注意文件名。
首先需要进行一些准备工作。
-
准备一台 arm8 的安卓手机,如果编译的预测库和 opt 文件是 armv7,则需要 arm7 的手机,并修改 Makefile 中
ARM_ABI = arm7
。 -
电脑上安装 ADB 工具,用于调试。 ADB安装方式如下:
- MAC电脑安装ADB:
brew cask install android-platform-tools
- Linux安装ADB
sudo apt update sudo apt install -y wget adb
- Window安装ADB win上安装需要去谷歌的安卓平台下载ADB软件包进行安装:链接
-
手机连接电脑后,开启手机
USB调试
选项,选择文件传输
模式,在电脑终端中输入:
adb devices
如果有 device 输出,则表示安装成功,如下所示:
List of devices attached
744be294 device
- 准备优化后的模型、预测库文件、测试图像和类别映射文件。
cd PaddleClas_root_path
cd deploy/lite/
# 运行prepare.sh
# prepare.sh 会将预测库文件、测试图像和使用的字典文件放置在预测库中的demo/cxx/clas文件夹下
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
# 进入lite demo的工作目录
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
cd demo/cxx/clas/
# 将C++预测动态库so文件复制到debug文件夹中
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
prepare.sh
以 PaddleClas/deploy/lite/imgs/tabby_cat.jpg
作为测试图像,将测试图像复制到 demo/cxx/clas/debug/
文件夹下。
将 paddle_lite_opt
工具优化后的模型文件放置到 /{lite prediction library path}/inference_lite_lib.android.armv8/demo/cxx/clas/debug/
文件夹下。本例中,使用 2.1.3 转换示例 生成的 MobileNetV3_large_x1_0.nb
模型文件。
执行完成后,clas 文件夹下将有如下文件格式:
demo/cxx/clas/
|-- debug/
| |--MobileNetV3_large_x1_0.nb 优化后的分类器模型文件
| |--tabby_cat.jpg 待测试图像
| |--imagenet1k_label_list.txt 类别映射文件
| |--libpaddle_light_api_shared.so C++预测库文件
| |--config.txt 分类预测超参数配置
|-- config.txt 分类预测超参数配置
|-- image_classfication.cpp 图像分类代码文件
|-- Makefile 编译文件
-
上述文件中,
imagenet1k_label_list.txt
是 ImageNet1k 数据集的类别映射文件,如果使用自定义的类别,需要更换该类别映射文件。 -
config.txt
包含了分类器的超参数,如下:
clas_model_file ./MobileNetV3_large_x1_0.nb # 模型文件地址
label_path ./imagenet1k_label_list.txt # 类别映射文本文件
resize_short_size 256 # resize之后的短边边长
crop_size 224 # 裁剪后用于预测的边长
visualize 0 # 是否进行可视化,如果选择的话,会在当前文件夹下生成名为clas_result.png的图像文件。
- 启动调试,上述步骤完成后就可以使用ADB将文件夹
debug/
push 到手机上运行,步骤如下:
# 执行编译,得到可执行文件clas_system
make -j
# 将编译得到的可执行文件移动到debug文件夹中
mv clas_system ./debug/
# 将上述debug文件夹push到手机上
adb push debug /data/local/tmp/
adb shell
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
# clas_system可执行文件的使用方式为:
# ./clas_system 配置文件路径 测试图像路径
./clas_system ./config.txt ./tabby_cat.jpg
如果对代码做了修改,则需要重新编译并 push 到手机上。
运行效果如下:
Q1:如果想更换模型怎么办,需要重新按照流程走一遍吗?
A1:如果已经走通了上述步骤,更换模型只需要替换 .nb
模型文件即可,同时要注意修改下配置文件中的 .nb
文件路径以及类别映射文件(如有必要)。
Q2:换一个图测试怎么做?
A2:替换 debug 下的测试图像为你想要测试的图像,使用 ADB 再次 push 到手机上即可。