-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_model.py
64 lines (51 loc) · 2.22 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
训练并评估单一模型
"""
import argparse
from mvts.pipeline import run_model
from mvts.utils import general_arguments, str2bool, str2float
def add_other_args(parser):
for arg in general_arguments:
if general_arguments[arg] == 'int':
parser.add_argument('--{}'.format(arg), type=int, default=None)
elif general_arguments[arg] == 'bool':
parser.add_argument('--{}'.format(arg),
type=str2bool, default=None)
elif general_arguments[arg] == 'float':
parser.add_argument('--{}'.format(arg),
type=str2float, default=None)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='multi_step',
help='the name of task, either multi_step or single_step')
parser.add_argument('--model', type=str, default='AGCRN',
help='the name of model according to the task')
parser.add_argument('--dataset', type=str, default='METR-LA',
help='the name of dataset')
parser.add_argument('--config_file', type=str, default=None,
help='the file name of config file')
parser.add_argument('--saved_model', type=bool, default=True,
help='whether save the trained model')
parser.add_argument('--train', type=bool, default=True,
help='whether re-train model if the model is trained before')
add_other_args(parser)
return parser.parse_args()
def prepare_model_arguments(args):
dict_args = vars(args)
other_args = {key: val for key, val in dict_args.items() if key not in [
'task', 'model', 'dataset', 'config_file', 'saved_model', 'train'] and
val is not None}
model_arguments = {
'task': args.task,
'model_name': args.model,
'dataset_name': args.dataset,
'config_file': args.config_file,
'saved_model': args.saved_model,
'train': args.train,
'other_args': other_args
}
return model_arguments
if __name__ == '__main__':
args = parse_arguments()
model_arguments = prepare_model_arguments(args)
run_model(**model_arguments)