-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathNNCalculator.py
258 lines (217 loc) · 10.1 KB
/
NNCalculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import tensorflow as tf
import numpy as np
import ase
from ase.neighborlist import neighbor_list
from .neural_network.NeuralNetwork import *
from .neural_network.activation_fn import *
'''
Calculator for the atomic simulation environment (ASE)
that evaluates energies and forces using a neural network
'''
class NNCalculator:
#most parameters are just passed to the neural network
def __init__(self,
checkpoint, #ckpt file from which to restore the model (can also be a list for ensembles)
atoms, #ASE atoms object
charge=0, #system charge
F=128, #dimensionality of feature vector
K=64, #number of radial basis functions
sr_cut=6.0, #short range cutoff distance
lr_cut = None, #long range cutoff distance
num_blocks=5, #number of building blocks to be stacked
num_residual_atomic=2, #number of residual layers for atomic refinements of feature vector
num_residual_interaction=3, #number of residual layers for refinement of message vector
num_residual_output=1, #number of residual layers for the output blocks
use_electrostatic=True, #adds electrostatic contributions to atomic energy
use_dispersion=True, #adds dispersion contributions to atomic energy
s6=None, #s6 coefficient for d3 dispersion, by default is learned
s8=None, #s8 coefficient for d3 dispersion, by default is learned
a1=None, #a1 coefficient for d3 dispersion, by default is learned
a2=None, #a2 coefficient for d3 dispersion, by default is learned
activation_fn=shifted_softplus, #activation function
dtype=tf.float32): #single or double precision
#create neighborlist
if lr_cut is None:
self._sr_cutoff = sr_cut
self._lr_cutoff = None
self._use_neighborlist = False
else:
self._sr_cutoff = sr_cut
self._lr_cutoff = lr_cut
self._use_neighborlist = True
#save checkpoint
self._checkpoint = checkpoint
#create neural network
self._nn = NeuralNetwork(F=F,
K=K,
sr_cut=sr_cut,
lr_cut=lr_cut,
num_blocks=num_blocks,
num_residual_atomic=num_residual_atomic,
num_residual_interaction=num_residual_interaction,
num_residual_output=num_residual_output,
use_electrostatic=use_electrostatic,
use_dispersion=use_dispersion,
s6=s6,
s8=s8,
a1=a1,
a2=a2,
activation_fn=activation_fn,
dtype=dtype, scope="neural_network")
#create placeholders for feeding data
self._Q_tot = np.array(1*[charge])
self._Z = tf.placeholder(tf.int32, shape=[None, ], name="Z")
self._R = tf.placeholder(dtype, shape=[None,3], name="R")
self._idx_i = tf.placeholder(tf.int32, shape=[None, ], name="idx_i")
self._idx_j = tf.placeholder(tf.int32, shape=[None, ], name="idx_j")
self._offsets = tf.placeholder(dtype, shape=[None,3], name="offsets")
self._sr_idx_i = tf.placeholder(tf.int32, shape=[None, ], name="sr_idx_i")
self._sr_idx_j = tf.placeholder(tf.int32, shape=[None, ], name="sr_idx_j")
self._sr_offsets = tf.placeholder(dtype, shape=[None,3], name="sr_offsets")
#calculate atomic charges, energy and force evaluation nodes
if self.use_neighborlist:
Ea, Qa, Dij, nhloss = self.nn.atomic_properties(self.Z, self.R, self.idx_i, self.idx_j, self.offsets, self.sr_idx_i, self.sr_idx_j, self.sr_offsets)
else:
Ea, Qa, Dij, nhloss = self.nn.atomic_properties(self.Z, self.R, self.idx_i, self.idx_j, self.offsets)
self._charges = self.nn.scaled_charges(self.Z, Qa, self.Q_tot)
self._energy, self._forces = self.nn.energy_and_forces_from_scaled_atomic_properties(Ea, self.charges, Dij, self.Z, self.R, self.idx_i, self.idx_j)
#create TensorFlow session and load neural network(s)
self._sess = tf.Session()
if(type(self.checkpoint) is not list):
self.nn.restore(self.sess, self.checkpoint)
#calculate properties once to initialize everything
self._calculate_all_properties(atoms)
def calculation_required(self, atoms, quantities=None):
return atoms != self.last_atoms
def _calculate_all_properties(self, atoms):
#find neighbors and offsets
if self.use_neighborlist or any(atoms.get_pbc()):
idx_i, idx_j, S = neighbor_list('ijS', atoms, self.lr_cutoff)
offsets = np.dot(S, atoms.get_cell())
sr_idx_i, sr_idx_j, sr_S = neighbor_list('ijS', atoms, self.sr_cutoff)
sr_offsets = np.dot(sr_S, atoms.get_cell())
feed_dict = {self.Z: atoms.get_atomic_numbers(), self.R: atoms.get_positions(),
self.idx_i: idx_i, self.idx_j: idx_j, self.offsets: offsets,
self.sr_idx_i: sr_idx_i, self.sr_idx_j: sr_idx_j, self.sr_offsets: sr_offsets}
else:
N = len(atoms)
idx_i = np.zeros([N*(N-1)], dtype=int)
idx_j = np.zeros([N*(N-1)], dtype=int)
offsets = np.zeros([N*(N-1),3], dtype=float)
count = 0
for i in range(N):
for j in range(N):
if i != j:
idx_i[count] = i
idx_j[count] = j
count += 1
feed_dict = {self.Z: atoms.get_atomic_numbers(), self.R: atoms.get_positions(),
self.idx_i: idx_i, self.idx_j: idx_j, self.offsets: offsets}
#calculate energy and forces (in case multiple NNs are used as ensemble, this forms the average)
if(type(self.checkpoint) is not list): #only one NN
self._last_energy, self._last_forces, self._last_charges = self.sess.run([self.energy, self.forces, self.charges], feed_dict=feed_dict)
self._energy_stdev = 0
else: #ensemble is used
for i in range(len(self.checkpoint)):
self.nn.restore(self.sess, self.checkpoint[i])
energy, forces, charges = self.sess.run([self.energy, self.forces, self.charges], feed_dict=feed_dict)
if i == 0:
self._last_energy = energy
self._last_forces = forces
self._last_charges = charges
self._energy_stdev = 0
else:
n = i+1
delta = energy-self.last_energy
self._last_energy += delta/n
self._energy_stdev += delta*(energy-self.last_energy)
for a in range(np.shape(charges)[0]): #loop over atoms
self._last_charges[a] += (charges[a]-self.last_charges[a])/n
for b in range(3):
self._last_forces[a,b] += (forces[a,b]-self.last_forces[a,b])/n
if(len(self.checkpoint) > 1):
self._energy_stdev = np.sqrt(self.energy_stdev/len(self.checkpoint))
self._last_energy = np.array(1*[self.last_energy]) #prevents some problems...
#store copy of atoms
self._last_atoms = atoms.copy()
def get_potential_energy(self, atoms, force_consistent=False):
if self.calculation_required(atoms):
self._calculate_all_properties(atoms)
return self.last_energy
def get_forces(self, atoms):
if self.calculation_required(atoms):
self._calculate_all_properties(atoms)
return self.last_forces
def get_charges(self, atoms):
if self.calculation_required(atoms):
self._calculate_all_properties(atoms)
return self.last_charges
@property
def sess(self):
return self._sess
@property
def last_atoms(self):
return self._last_atoms
@property
def last_energy(self):
return self._last_energy
@property
def last_forces(self):
return self._last_forces
@property
def last_charges(self):
return self._last_charges
@property
def energy_stdev(self):
return self._energy_stdev
@property
def sr_cutoff(self):
return self._sr_cutoff
@property
def lr_cutoff(self):
return self._lr_cutoff
@property
def use_neighborlist(self):
return self._use_neighborlist
@property
def nn(self):
return self._nn
@property
def checkpoint(self):
return self._checkpoint
@property
def Z(self):
return self._Z
@property
def Q_tot(self):
return self._Q_tot
@property
def R(self):
return self._R
@property
def offsets(self):
return self._offsets
@property
def idx_i(self):
return self._idx_i
@property
def idx_j(self):
return self._idx_j
@property
def sr_offsets(self):
return self._sr_offsets
@property
def sr_idx_i(self):
return self._sr_idx_i
@property
def sr_idx_j(self):
return self._sr_idx_j
@property
def energy(self):
return self._energy
@property
def forces(self):
return self._forces
@property
def charges(self):
return self._charges