-
Notifications
You must be signed in to change notification settings - Fork 0
/
tagger_net.py
147 lines (124 loc) · 5.38 KB
/
tagger_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from keras import backend as K
from keras.layers import Input, Dense
from keras.models import Model
from keras.layers import Dense, Dropout, Reshape, Permute
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import ELU
from keras.layers.recurrent import GRU
from keras.utils.data_utils import get_file
def pop_layer(model):
if not model.outputs:
raise Exception('Sequential model cannot be popped: model is empty.')
model.layers.pop()
if not model.layers:
model.outputs = []
model.inbound_nodes = []
model.outbound_nodes = []
else:
model.layers[-1].outbound_nodes = []
model.outputs = [model.layers[-1].output]
model.built = False
def MusicTaggerCRNN(weights='msd', input_tensor=None):
'''Instantiate the MusicTaggerCRNN architecture,
optionally loading weights pre-trained
on Million Song Dataset. Note that when using TensorFlow,
for best performance you should set
`image_dim_ordering="tf"` in your Keras config
at ~/.keras/keras.json.
The model and the weights are compatible with both
TensorFlow and Theano. The dimension ordering
convention used by the model is the one
specified in your Keras config file.
For preparing mel-spectrogram input, see
`audio_conv_utils.py` in [applications](https://github.com/fchollet/keras/tree/master/keras/applications).
You will need to install [Librosa](http://librosa.github.io/librosa/)
to use it.
# Arguments
weights: one of `None` (random initialization)
or "msd" (pre-training on ImageNet).
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
# Returns
A Keras model instance.
'''
if weights not in {'msd', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `msd` '
'(pre-training on Million Song Dataset).')
# Determine proper input shape
if K.image_dim_ordering() == 'th':
input_shape = (1, 96, 1366)
else:
input_shape = (96, 1366, 1)
if input_tensor is None:
melgram_input = Input(shape=input_shape)
else:
melgram_input = Input(shape=input_tensor)
# Determine input axis
if K.image_dim_ordering() == 'th':
channel_axis = 1
freq_axis = 2
time_axis = 3
else:
channel_axis = 3
freq_axis = 1
time_axis = 2
# Input block
x = ZeroPadding2D(padding=(0, 37))(melgram_input)
x = BatchNormalization(axis=time_axis, name='bn_0_freq')(x)
# Conv block 1
x = Convolution2D(64, 3, 3, border_mode='same', name='conv1', trainable=False)(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn1', trainable=False)(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1', trainable=False)(x)
x = Dropout(0.1, name='dropout1', trainable=False)(x)
# Conv block 2
x = Convolution2D(128, 3, 3, border_mode='same', name='conv2', trainable=False)(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn2', trainable=False)(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(3, 3), strides=(3, 3), name='pool2', trainable=False)(x)
x = Dropout(0.1, name='dropout2', trainable=False)(x)
# Conv block 3
x = Convolution2D(128, 3, 3, border_mode='same', name='conv3', trainable=False)(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn3', trainable=False)(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool3', trainable=False)(x)
x = Dropout(0.1, name='dropout3', trainable=False)(x)
# Conv block 4
x = Convolution2D(128, 3, 3, border_mode='same', name='conv4', trainable=False)(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn4', trainable=False)(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool4', trainable=False)(x)
x = Dropout(0.1, name='dropout4', trainable=False)(x)
# reshaping
if K.image_dim_ordering() == 'th':
x = Permute((3, 1, 2))(x)
x = Reshape((15, 128))(x)
# GRU block 1, 2, output
x = GRU(32, return_sequences=True, name='gru1')(x)
x = GRU(32, return_sequences=False, name='gru2')(x)
x = Dropout(0.3, name='final_drop')(x)
if weights is None:
# Create model
x = Dense(10, activation='sigmoid', name='output')(x)
model = Model(melgram_input, x)
return model
else:
# Load input
x = Dense(50, activation='sigmoid', name='output')(x)
if K.image_dim_ordering() == 'tf':
raise RuntimeError("Please set image_dim_ordering == 'th'."
"You can set it at ~/.keras/keras.json")
# Create model
initial_model = Model(melgram_input, x)
initial_model.load_weights('weights/music_tagger_crnn_weights_%s.h5' % K._BACKEND,
by_name=True)
# Eliminate last layer
pop_layer(initial_model)
# Add new Dense layer
last = initial_model.get_layer('final_drop')
preds = (Dense(10, activation='sigmoid', name='preds'))(last.output)
model = Model(initial_model.input, preds)
return model