-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollector_plate.py
232 lines (187 loc) · 8.35 KB
/
collector_plate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import math
import time
import matplotlib.pyplot as plt
#simulator mode, set false for specific scenario (vars at bottom)
perform_cotters = False
# particle constants
p_particle_m = [1000, 1500] # kg / m^3
d_particle_m = [2.5E-6, 10.0E-6] # m
q_particle_m = [2.0E-17, 2.0E-17] # C
c_particles_m = [29.7E-9 , 44.9E-9] # concentration kg/m^3
h_particle_init_m = [0.1, 0.5]#[1.5E-2, 1.5E-2] # initial height above plate
v_particle_init = 0
# fluid constants
p_fluid_m = [1.293,1.293] # kg / m^3
u_fluid_m = [1.81E-5,1.81E-5] # Ns / m^2 p*v
v_fluid_m = [0.1, 5] # m/s
# plate constants
u_plate_m = [200,2000] # Volts (potential applied to plate)
# cotter's settings
x_terms = [p_particle_m, d_particle_m, q_particle_m, c_particles_m, \
h_particle_init_m, p_fluid_m, u_fluid_m, u_plate_m, v_fluid_m]
x_terms_names = ['p_particle', 'd_particle', 'q_particle', 'c_particles', \
'h_particle_init', 'p_fluid', 'u_fluid', 'u_plate', 'v_fluid_m']
# general constants
g = 9.81 # m/s^2
e0 = 8.854E-12 # F*m^-1
dt = 0.00002
# max height to look at surrounding charges
def hSurround(h_particle_init):
return 2 * h_particle_init
def mParticle(p_particle, d_particle):
return math.pi / 6 * p_particle * math.pow(d_particle, 3)
# Gravitational Force (const) (downward) --------------------------
def fGravity(p_particle, d_particle):
return - math.pi / 6.0 * p_particle * g * math.pow(d_particle, 3)
# Buoyant Force (cosnt) (upward) --------------------------
def fBuoyancy(p_fluid, d_particle):
return math.pi / 6.0 * p_fluid * g * math.pow(d_particle, 3)
# Drag Force (depends on v apparent) (upward) --------------------------
def Cd(v_apparent, d_particle):
#print(p_fluid * d_particle * math.fabs(v_apparent) / u_fluid)
if(v_apparent != 0):
return 24 / (1.39E-5 / v_apparent / d_particle)
else:
return 0
#return 24 / (p_fluid * d_particle * math.fabs(v_apparent) / u_fluid)
def fDrag(v_apparent, u_fluid, d_particle):
if(v_apparent != 0):
return 0.5 * Cd(math.fabs(v_apparent), d_particle) * 1.293 * 0.25 * math.pi * math.pow(d_particle, 2) * \
math.pow(v_apparent, 2)
else:
return 0
#return 6.0 * math.pi * u_fluid * d_particle / 2 * v_apparent
# Electric Field Force due to plate (const) (downward) --------------------------
def fPlate(d, q_particle, u_plate):
return - q_particle * u_plate / d # E = V / d , F = Eq
#return - q_particle * u_plate / 4.0 / math.pi / e0
# Electric field force due to surrounding charges (depends on height) --------------------------
def fSurrCharges(d, q_particle, p_particle, d_particle, c_particles, H):
return math.pow(q_particle, 2) * c_particles / mParticle(p_particle, d_particle) / 2.0 / e0 * (2*d - H)
def totalForce(d, v, p_particle, d_particle, q_particle, c_particles, h_particle_init,
p_fluid, u_fluid, u_plate):
#print("g: {:.3e} b: {:.3e} d: {:.3e} plate: {:.3e} surr: {:.3e}".format(\
# fGravity(p_particle,d_particle), fBuoyancy(p_fluid,d_particle), fDrag(v,u_fluid,d_particle), \
# fPlate(d, q_particle, u_plate), fSurrCharges(d, q_particle, p_particle, d_particle, c_particles, hSurround(h_particle_init))))
#return fGravity(p_particle, d_particle) + fBuoyancy(p_fluid, d_particle) + \
return fBuoyancy(p_fluid, d_particle) + \
fDrag(v, u_fluid, d_particle) + fPlate(d, q_particle, u_plate) + \
fSurrCharges(d, q_particle, p_particle, d_particle, c_particles, hSurround(h_particle_init))
# model will start with initial v and d
# each time, calculate new v and d based on force calculation
def estimateTravelTime(p_particle, d_particle, q_particle, c_particles,
h_particle_init, p_fluid, u_fluid, u_plate):
current_h = h_particle_init
current_v = 0
current_a = 0
current_t = 0
# run model until the current h becomes <= 0 (hits the plate)
counter = 0
max_count = 100000000
while(current_h > 0 and counter < max_count):
current_a = totalForce(current_h, current_v, p_particle, d_particle,
q_particle, c_particles, h_particle_init,
p_fluid, u_fluid, u_plate) / mParticle(p_particle, d_particle)
# dv = a*dt
current_v += current_a * dt
# dh = v*dt
current_h += current_v * dt
current_t += dt
#print("T: {:5.3f} H: {:5.4e} V: {:5.4e} A: {:5.4e}: ".format(current_t,
# current_h, current_v, current_a))
# history_h.append(current_h)
# history_v.append(current_v)
# history_a.append(current_a)
# history_t.append(current_t)
counter += 1
if(counter >= max_count):
print("Counter maxed out!")
print("Run time: {:.6f} End Velocity: {:.6f} End Accel: {:.6f}".format(current_t, current_v, current_a))
return current_t
def estimateMinLength(p_particle, d_particle, q_particle, c_particles,
h_particle_init, p_fluid, u_fluid, u_plate, v_fluid):
t = estimateTravelTime(p_particle, d_particle, q_particle, c_particles,
h_particle_init, p_fluid, u_fluid, u_plate)
#print("Min Length: {:.2f}".format(v_fluid * t))
return v_fluid * t
# Cotter's Method Functions
# note, j is 1 based indexing (that is how Cotter's method is defined)
def codd(j, y):
j = int(j)
n = int((len(y) - 2) / 2)
return 0.25 * ( (y[2*n+2-1] - y[j+n+1-1]) + (y[j+1-1] - y[1-1]))
def ceven(j, y):
j = int(j)
n = int((len(y) - 2) / 2)
return 0.25 * ( (y[2*n+2-1] - y[j+n+1-1]) - (y[j+1-1] - y[1-1]))
def m(j, y):
return math.fabs(codd(j, y)) + math.fabs(ceven(j, y))
def s(j, y):
m_list = []
for i in range(int((len(y)-2) / 2)):
m_list.append(m(i+1, y))
sum_m = sum(m_list)
return m(j, y) / sum_m
def isSignificant(j, y):
return s(j, y) >= 1.0/len(y)
# x terms contains list of each variable in which min is index 0 and max is index 1
# remember cotter's method stuff is 1 based indexing
y_terms = []
# L H L L L H H H
# L L H L H L H H < for 3 x's
# L L L H H H L H
if(perform_cotters):
low_terms, high_terms = list(zip(*x_terms))
low_terms = list(low_terms)
high_terms = list(high_terms)
# Low Case
y_terms.append(estimateMinLength(*low_terms))
# Iterate through with all lows and one high
for i in range(len(low_terms)):
input_list = low_terms.copy()
# Make one high
input_list[i] = high_terms[i]
y_terms.append(estimateMinLength(*input_list))
# Iterate through with all highs and one low
for i in range(len(low_terms)):
input_list = high_terms.copy()
# Make one high
input_list[i] = low_terms[i]
y_terms.append(estimateMinLength(*input_list))
# High Case
y_terms.append(estimateMinLength(*high_terms))
#print(y_terms)
term_significance_level = []
term_is_significant = []
# Perform Significance Analysis
for i in range(len(low_terms)):
term_significance_level.append(s(i+1, y_terms))
term_is_significant.append(isSignificant(i+1, y_terms))
#print(term_is_significant)
print("Cotter's Method Results")
print("{:16s} {:12s} {:11s}".format("Term", "Level", "Significant"))
for i in range(len(low_terms)):
print("{:<16s} {:<12.3f} {:<11s}".format(x_terms_names[i], term_significance_level[i]*100, str(term_is_significant[i])))
# Individual Scenario Simulation
else:
print("Performing analysis on Specific Scenario")
p_particle_s = 1000 #1000 # kg / m^3
d_particle_s = 2.5E-6 #[2.5E-6, 10.0E-6] # m
q_particle_s = 2.0E-17 # C
c_particles_s = 44.9E-9 #[29.7E-9 , 44.9E-9] # concentration kg/m^3
h_particle_init_s = 0.4 #0.35 # initial height above plate
# fluid constants
p_fluid_s = 1.293 # kg / m^3
u_fluid_s = 1.81E-5 # Ns / m^2 p*v
v_fluid_s = 2 #2.5 # m/s
# plate constants
u_plate_s = 2000 #[200,2000] # Volts (potential applied to plate)
scenario_terms = [p_particle_s, d_particle_s, q_particle_s, c_particles_s, \
h_particle_init_s, p_fluid_s, u_fluid_s, u_plate_s, v_fluid_s]
dist = estimateMinLength(*scenario_terms)
print("\nInput Variables----------")
for i in range(len(x_terms_names)):
print("{:<16s}: {:<12.3e}".format(x_terms_names[i], scenario_terms[i]))
print("\nOutput-------------------")
print("minimum distance: {:.2f}".format(dist))
print("\n")