
Building a data flow graph for Java
Lukas Pietzschmann, Denis Neumüller, Florian Sihler

☕
void foo(int[] arr 1 ){

int len 2 = arr 3 .length;
for(int i = 0; i < len; ++i) {
System.out.println(arr[i]);

}
}

?
The Problem

Is len dependent on arr?

Yes, because there’s a path between int len 2
and int[] arr 1 .

!
int[] arr

arr.lengthint len

len arr[i]

1

2 3
read from

read from

defined by

re
ad

fr
om

The Algorithm

We keep a set of declarations whose data flow we are
interested in — the active set. When traversing the AST,
we look at every piece of code, but we’re especially in-
terested in (1) variables and (2) assignments, as they
primarily influence the data flow.

For every variable we encounter, we get its declaration
and add it to the active set‹1›. Additionally, we create a
new node inside the graph. This node can have one of
two types: (1) Def, if the element is a declaration or on the
left-hand side of an assignment and (2) Use, otherwise.

Now we can hook up the newly added node. For this pur-
pose, we get all recently added elements that share a
declaration with the current element — e.g., in the figure
on the right, all a’s share a declaration. We then connect
the newly added node to all recently added nodes, only
omitting Use -> Use edges.

Assignments are already largely handled by the rules
above. Variables on the left and right-hand side are cor-
rectly inserted, we just have to connect the assignee
to active elements in the assignment. This is done by
getting all active elements from the right-hand side and
drawing an edge from the left-hand side to them.

The types of two nodes alone lets us infer the type of
the edge connecting them. We distinguish between three
edge types: (1) Read From: Use → Def, (2) Defined By:
Def→ Use, and (3) Occurrence: Def→ Def.

Getting the data flow to, from, or between elements
can be narrowed down to a graph reachability problem.
(1) To: We return all elements that can be reached from
the given element. (2) From: We return all elements that
can reach the given element. (3) Between: We return all
paths between two elements.

An Example

public int foo(int n, int i) {
int a = n + 5;
if(Math.random() > 0.5) {
a = i;

} else {
a = a + 2;

}
return a;

}

a = i int a = n + 5

int a = n + 5a = i

int nint i

a = a + 2

a = a + 2

return a

read from
read

from

defined by

read from

occurrence

defined by

oc
cu
rr
en
ceread from

defined by

read from

Future Work

While basic cases are already handled well, a variety of situations are taken care of poorly or not at all. Here are some
areas we want to improve in:
Methods When a method is called, we definitely want to trace the data flow of all arguments through the method. We

currently have basic support for this, but work still needs to be put into it.
Recursion If a method calls itself — either directly or indirectly — we need to recognize this when generating and

traversing the data flow graph.
Arrays We currently treat arrays as a single thing. Ideally, we would keep track of every index that is accessed.
Control Structures We currently only treat if-else statements correctly. Support for other control structures

(e.g., loops) is definitely needed.

Project Organization

Organization We’re doing weekly meetings to review
the current progress, discuss decisions and / or poten-
tial issues, and prioritize and schedule future work. If
important decisions were made in our meeting, we re-
cord them in a wiki so that we can still understand later
why we decided the way we did.

Technology Stack The project is developed using
Java 17. Additionally, we employ Gradle (Groovy) as a
build and dependency management system.

The current AlDeSCo-Prototype uses Spoon to parse and
analyze any given Java source code. We then traverse
Spoon’s AST in order to build the data flow graph, which
is represented by JGraphT’s data structures. The actual
spanning of the data flow graph is completely done by
ourselves without the help of a library.

QA In order to assure that no functionality breaks over
time, we use a small‹2› but (hopefully ) expanding test
suite.

To ensure the employment of best practices, we often
review newly added code in our weekly meetings. This
massively helps in keeping the code easy to understand
and well readable. However, if we overlook a small error,
it will most likely be caught by TeamScale, our static
code analysis platform.

We also use assertions whenever possible to make sure
our mental model aligns with the actual execution of
the code.

Documentation The above-mentioned GitLab wikis are
not only used for meeting protocols, but also to docu-
ment important aspects of the code. However, most of
our documentation is written inline using the JavaDoc
syntax.

‹1›If an element is already active, the set will kindly reject it.
‹2›Only the test suite targeting the data flow is currently kinda small. AlDeSCo’s main test suite contains ≈ 470 tests.

07/28/2023 Institute of Software Engineering and Programming Languages Ulm University


