
Abstract Interpretation
The cooler AI

Lukas Pietzschmann, Florian Sihler

Join us and our

f lowR-power

x1<-- 10
y1<-- 5 + x2

if(y2> 10) {

compA(y3)

} else {

compB(y4)

}

Step 1 To set everything up, we retrieve the code,
get its abstract syntax tree, normalize it, and finally
build and return the dataflow graph. This graph
will then be used as a base for the next step.

x1 x2 y1 y3 compA

y4 compB

y2

[10, 10] [10, 10] [15, 15] [15, 15]

⊥

[15, 15]

Step 2 In the second step, the actual abstract
interpretation happens. This step gradually deco-
rates the dataflow graph with the domains of the
respective variables, by traversing the control flow
graph.

x1 x2 y1 y3 compA

y4 compB
⊥

y2

[10, 10] [10, 10] [15, 15] [15, 15]

[15, 15]

Step 3 The last step uses the decorated dataflow
graph to determine and track different properties
of the original code. We can, e.g., catch endless
loops, or, as shown above, ignore unreachable
nodes in the dataflow graph.

How Abstract Interpretation fits into flowR

flowR flowR is a static dataflow analyzer and program slicer for the R language. Program slicers reduce a
given program to a set of statements — the so called slices — that influence a variable at a specific point in
the program: the slicing criterion. flowR formulates the slicing as a reachability problem on the dataflow
graph, which itself is based on the abstract syntax tree of the R program.

Abstract Interpretation Abstract interpretation is all about figuring out runtime properties of a given pro-
gram without actually executing it. These properties include aspects like the sign or nullness of a variable.
For now we decided to limit ourselves to determining the domain of numeric variables. In other words, we
want to know what values a variable can have at a certain point in the program.

Abstract Interpretation in flowR Abstract interpretation helps flowR to build a more precise dataflow graph
by removing certain paths if we can prove that they will never be executed. Imagine a conditional like
if(i < 10) doit() else run(). If, through abstract interpretation, we know that i’s value is always
less than 10, there’s no need to include the path stemming from the if’s else-case in the slice.

Abstract Interpretation

let 𝑎 ∈ [0, 200] ⊂ ℕ0
let 𝑏 ∈ [5, 10] ⊂ ℕ0

 if (a < 100) {
 a <-- a + 1

 } else {
 a <-- a + 1
 b <-- b + 2

 }
 a; b

Fig. 1 The source code we want to analyze.

𝑎 𝑏
start [0, 200] [5, 10]

1 [0, 99] [5, 10]
2 [1, 100] [5, 10]
3 [100, 200] [5, 10]
4 [101, 201] [5, 10]
5 [101, 201] [7, 12]
7 [1, 201] [5, 12]

Fig. 2 The computed domain for both variables
at every line.

We assume that the integer variables a and b have both been defined and initialized elsewhere. When
entering the snippet shown above, their values are assumed to fall within the domains [0, 200] and [5, 10].
We can read this as follows: a’s value will always be greater or equal to 0, and less than or equal to 200.

We then start by traversing the control flow graph in execution order, processing each element of the original
program. We’re especially interested in (1) operations that change the value of a variable, (2) assignments,
and (3) structures that influence the control flow. When encountering an expression of type (1), like addition,
subtraction, and other arithmetic operations, we merge the operands’ domains according to the given
operation. We can observe this in line 2, where a’s value was previously determined to be between 0 and 99.
Adding 1 to a modified its domain by incrementing both the lower and upper bound to 1 and 100. When we
encounter an assignment, we use the domain of the assignments source expression and map it to the target
variable. We can also see this in line 2, where the domain of a + 1 — namely [1, 100] — is set as a’s new
domain. Lastly, if we encounter a structure of type (3), like conditionals or loops, we check how the condition
narrows down a variable’s domain. In the if-else above, it is evident that the condition a < 100 will
always hold in the if’s then-case, while conversely, it does not hold in its else-case. In example above, we
can use this fact to lower the domains upper bound to the conditions upper bound — namely 99. Figure 2
shows this in line 1, where a’s domain [0, 200] got narrowed down to [0, 99].

Besides the domains shown above, we use two special values to indicate two cases. We use⊤ (top) whenever
the domain of a variable is unknown. Or in different words: when the variable could take every possible
value. If the opposite is the case — if a variable can’t take any value — we use ⊥ (bottom).

Project Organization

Organization We’re doingweeklymeetings, where
we discuss the progress made in the past week, talk
about open issues, and prioritize tasks for the next
week. We also keep a record of important things
that came up in our meeting. If there’s any spare
time, Florian often tells me about new weirdcool
things he learned about the R language.

Tech Stack flowR is developed with TypeScript,
then transpiled to JavaScript with Node.js as its run-
time. While we use different libraries for utilitarian
tasks — like chai for assertions, mocha for tests,
or tslog for logging — all major functionalities, in-
cluding abstract interpretation, are implemented
by hand, as there’s a big lack of libraries offering
these features for the R programming language.

QA To ensure the employment of best practices,
we always do code reviews on pull requests. This
massively helps with keeping the code easy to un-
derstand and well readable.

If an error slips through during the review, either
flowR’s linter, or its extensive suite of over 1000
tests will probably catch it. Additionally, we con-
sistently introduce new tests promptly whenever
there is new code in the project.

We also make heavy use of assertions — or how
we call them: guards — whenever possible to make
sure our mental model aligns with the actual exe-
cution of the code.

Documentation flowR’s documentation is split
into two parts: (1) a user facing documentation
hosted in a GitHub wiki and (2) a developer facing
documentation built from inline comments.

Future Work

Well, there’s still a lot to do! As a first step, we
need to implement support for more control struc-
tures, operators, and function calls. When this is
done and basic cases are handled well, we can start
modifying the dataflow graph and automatically
through that, narrow down the slices flowR pro-
duces. As a last step, there are many things that
can be optimized, like the representation of do-
mains. While this is definitely not mission critical,
good performance is always a nice thing to have.

And all of this is only just the tip of the iceberg.
Abstract interpretation allows for way more than
just the tracking of value domain. Obvious exten-
sions of this project could include the tracking of
domains for different types, or pointer analysis.

02/02/2024 Institute of Software Engineering and Programming Languages Ulm University


