-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_fcn.py
148 lines (119 loc) · 5.14 KB
/
train_fcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from pyts.datasets import fetch_ucr_dataset
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset, DataLoader, TensorDataset
from fcn_pytorch_model import FCN
# dataset = ['Coffee', 'ECG200', 'GunPoint', 'TwoLeadECG', 'CBF']
# [1.0, 0.88, 0.99, 0.99, 0.99]
dataset = ['Coffee']
softmax_fn = torch.nn.Softmax(dim=-1)
acc = []
for data in dataset:
print("start: ", data)
data_train, data_test, target_train, target_test = fetch_ucr_dataset(data, use_cache=True, data_home=None, return_X_y=True)
print(data_train.shape)
data_train = data_train.reshape(data_train.shape[0], 1, data_train.shape[1])
data_test = data_test.reshape(data_test.shape[0], 1, data_test.shape[1])
encoder = LabelEncoder()
target_train = encoder.fit_transform(target_train)
target_test = encoder.fit_transform(target_test)
train_data = torch.tensor(data_train, dtype=torch.float32)
train_targets = torch.tensor(target_train, dtype=torch.long)
test_data = torch.tensor(data_test, dtype=torch.float32)
test_targets = torch.tensor(target_test, dtype=torch.long)
# Create a PyTorch dataset and dataloader for training data
train_dataset = TensorDataset(train_data, train_targets)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
# Split the training data into training and validation sets
val_ratio = 0.2 # Define the ratio of validation data
val_size = int(val_ratio * len(train_dataset))
train_size = len(train_dataset) - val_size
train_data, val_data = torch.utils.data.random_split(train_dataset, [train_size, val_size])
train_loader = DataLoader(train_data, batch_size=16, shuffle=True)
val_loader = DataLoader(val_data, batch_size=16, shuffle=False)
# Instantiate the FCN model
# print("train_data_shape: ", train_data.dataset.tensors[0].shape)
# train_data_shape: torch.Size([28, 286])
input_size = train_data.dataset.tensors[0].shape[1] # Adjust the input size based on your data
# print("input_size", input_size)
# input_size: 286
num_classes = len(torch.unique(train_targets))
model = FCN(input_size, num_classes)
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
# Train the model
num_epochs = 100
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
best_val_loss = float('inf')
for epoch in range(num_epochs):
model.train()
for inputs, targets in train_loader:
inputs = inputs.to(device)
targets = targets.to(device)
# Forward pass
# print("inputs.shape", inputs.shape)
outputs = model(inputs)
# print(outputs, outputs.shape) (16, 2)
# break
# Compute the loss
loss = criterion(outputs, targets)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
val_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for inputs, targets in val_loader:
inputs = inputs.to(device)
targets = targets.to(device)
# Forward pass
outputs = model(inputs)
# Compute the validation loss
val_loss += criterion(outputs, targets).item()
# Compute the validation accuracy
_, predicted = torch.max(outputs, 1)
val_correct += (predicted == targets).sum().item()
val_total += targets.size(0)
val_loss /= len(val_loader)
val_accuracy = val_correct / val_total
print(
f"Epoch [{epoch + 1}/{num_epochs}], Train Loss: {loss.item()}, Val Loss: {val_loss}, Val Accuracy: {val_accuracy}")
# Save the best model based on validation loss
save_dir = "models/"
# Create the save directory if it doesn't exist
os.makedirs(save_dir, exist_ok=True)
# Save the model in the specified directory
model_path = os.path.join(save_dir, data + "_best_model.pth")
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), model_path)
# Load the saved model
saved_model = FCN(input_size, num_classes)
saved_model.load_state_dict(torch.load(model_path))
saved_model.to(device)
# Evaluate the model on the test set
test_data = test_data.to(device)
test_targets = test_targets.to(device)
# print(test_data.shape, test_targets.shape)
saved_model.eval()
with torch.no_grad():
outputs = saved_model(test_data)
# print(outputs,outputs.shape)
print(softmax_fn(outputs))
a, predicted = torch.max(outputs, 1)
# print(predicted)
correct = (predicted == test_targets).sum().item()
total = test_targets.size(0)
accuracy = correct / total
acc.append(accuracy)
print("accuracy: ", accuracy)
print(acc)