-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclient.py
78 lines (62 loc) · 2.63 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import numpy as np
from torch.utils import data
from models.cnn import Cnn
import copy
from utils import *
import pandas as pd
from configs import TrainConfig
class Client:
def __init__(self, id):
self.id = id
self.local_dir = 'clients/' + str(id) + '/'
dir_setup(self.local_dir)
self.dataset = []
dir_setup(self.local_dir + 'dataset/')
self.label = []
dir_setup(self.local_dir + 'label/')
self.model = Cnn()
dir_setup(self.local_dir + 'model/')
# The number of samples the client owns (before really load data)
self.num_data_owned_setup = 0
# log - train process visialization
"""if os.path.exists("clients/" + str(self.id) + "/" + "log.csv"):
self.loss_list = []
else:
self.loss_list = []"""
def load_data(self, data_label_list):
self.dataset.append(data_label_list[0])
self.label.append(data_label_list[1])
def load_model_from_path(self, model_path):
self.model = torch.load(model_path)
def load_model(self, model):
self.model = copy.deepcopy(model)
def train_data_load(self, config: TrainConfig()):
# Transform to torch tensors
"""dataset = []
label = []
for d in self.dataset:
dataset.append(np.float(d))
for d in self.label:
label.append(np.float(d))"""
'''for t in self.label:
print(t)'''
tensor_samples = torch.stack([s.float() for s in self.dataset])
tensor_targets = torch.stack([t for t in self.label])
train_dataset = data.TensorDataset(tensor_samples, tensor_targets)
return data.DataLoader(dataset=train_dataset,
batch_size=config.batch_size,
shuffle=config.shuffle,
collate_fn=config.collate_fn,
batch_sampler=config.batch_sampler,
num_workers=config.num_workers,
pin_memory=config.pin_memory,
drop_last=config.drop_last,
timeout=config.timeout,
worker_init_fn=config.worker_init_fn)
def num_data_owned(self):
return len(self.dataset)
# client writes logs
def log_write(self, epoch, loss):
loss_data_frame = pd.DataFrame(columns=None, index=[epoch], data=[loss])
loss_data_frame.to_csv("clients/" + str(self.id) + "/" + "log.csv", mode='a', header=False)