-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTSP_ACO_GA.py
387 lines (330 loc) · 14.3 KB
/
TSP_ACO_GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# GENETIC ALGORITHM
from tkinter import *
from tkinter.ttk import *
import time
import matplotlib
matplotlib.use("TkAgg")
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.animation import FuncAnimation
#import matplotlib.animation as animation
import numpy
import string
import matplotlib.pyplot as plt
import matplotlib.animation
#import matplotlib
import random
numpy.random.seed(1)
N = 25
_nodes = [(random.uniform(-400, 400), random.uniform(-400, 400)) for _ in range(0, 25)]
xx = [i[0] for i in _nodes]
yy = [i[1] for i in _nodes]
# Generation of labels and random coordinates for N cities
CITY_LABELS = list(range(N))
#CITY_COORD = numpy.random.randint(0, 200, (N, 2))
#CITY_COORD=numpy.array([(random.uniform(-400, 400), random.uniform(-400, 400)) for _ in range(0, 25)])
CITY_COORD=numpy.array(_nodes)
CITY_DICT = {label: coord for (label, coord) in zip(CITY_LABELS, CITY_COORD)}
# Population initialization function
def init(pop_size):
def random_permutation():
population = list()
for _ in range(pop_size):
# Each individual is a random permutation of the set of cities
individual = list(numpy.random.permutation(CITY_LABELS))
population.append(individual)
return population
return random_permutation()
#fitness function
# Calculates the fitness of all individuals in the population
def fit(population):
fitness = list()
for individual in population:
distance = 0
for i, city in enumerate(individual):
s = CITY_DICT[individual[i-1]]
t = CITY_DICT[individual[i]]
distance += numpy.linalg.norm(s-t)
fitness.append(1/distance)
return fitness
# Selection function
def selection(population, fitness, n):
def roulette():
# Obtaining the indices for each individual in the population
idx = numpy.arange(0, len(population))
# Calculation of selection probabilities based on individuals' aptitude
probabilities = fitness/numpy.sum(fitness)
# Choice of parent indexes
parents_idx = numpy.random.choice(idx, size=n, p=probabilities)
# Choice of parents based on selected indexes
parents = numpy.take(population, parents_idx, axis=0)
parents = [(parents[i], parents[i+1])
for i in range(0, len(parents)-1, 2)]
return parents
return roulette()
# Crossover function
def crossover(parents, crossover_rate=0.9):
def ordered():
children = list()
# Iteration by all pairs of parents
for pair in parents:
if numpy.random.random() < crossover_rate:
for (parent1, parent2) in [(pair[0], pair[1]), (pair[1], pair[0])]:
# Cut segment definition
points = numpy.random.randint(0, len(parent1), 2)
start = min(points)
end = max(points)
segment1 = [x for x in parent1[start:end]]
segment2 = [x for x in parent2[end:] if x not in segment1]
segment3 = [x for x in parent2[:end] if x not in segment1]
child = segment3 + segment1 + segment2
children.append(child)
else:
# If the crossing does not occur, the parents remain in the next generation
children.append(pair[0])
children.append(pair[1])
return children
return ordered()
#mutation function
def mutation(children, mutation_rate=0.05):
def swap():
for i, child in enumerate(children):
if numpy.random.random() < mutation_rate:
[a, b] = numpy.random.randint(0, len(child), 2)
children[i][a], children[i][b] = children[i][b], children[i][a]
return children
return swap()
# Stop criterion function
def stop():
return False
# Elitism function
def elitism(population, fitness, n):
# Select n most suitable individuals
return [e[0] for e in sorted(zip(population, fitness),
key=lambda x:x[1], reverse=True)[:n]]
def base_algorithm(pop_size, max_generations, elite_size=0):
population = init(pop_size)
yield 0, population, fit(population)
for g in range(max_generations):
fitness = fit(population)
elite = elitism(population, fitness, elite_size)
parents = selection(population, fitness, pop_size - elite_size)
children = crossover(parents)
children = mutation(children)
population = elite + children
yield g+1, population, fit(population)
#if stop():
#break
# Animation Function
def ga():
run = base_algorithm(pop_size=100, max_generations=300, elite_size=10)
fig = plt.figure(figsize=(12, 8))
gs = fig.add_gridspec(2, 3, wspace=0.45, hspace=0.35)
ax3 = fig.add_subplot(gs[0, 0])
ax3.set_xlabel('x (kms)')
ax3.set_ylabel('y (kms)')
ax3.set_title('Cities', fontweight='bold', pad=10)
ax3.set_xlim([-400, 410])
ax3.set_ylim([-400, 410])
ax3.scatter(CITY_COORD[:, 0],CITY_COORD[:, 1], c='r', edgecolors='black', alpha=0.85)
x = []
y_min = []
y_mean = []
ax0 = fig.add_subplot(gs[1, 0])
ax1 = fig.add_subplot(gs[:, 1:])
def animate(args):
ax0.clear()
ax1.clear()
ax0.set_title('Best path distance in every generation', fontweight='bold', pad=10)
ax0.set_xlabel('Generations')
ax0.set_ylabel('Distance (kms)')
g, population, fitness = args
x.append(g)
dist = [1/f for f in fitness]
y_min.append(numpy.min(dist))
y_mean.append(numpy.mean(dist))
ax0.plot(x, y_min, color='blue', alpha=0.7, label='Fittest individual')
#ax0.plot(x, y_mean, color='blue', alpha=0.7, label='Média da população')
ax0.legend(loc='upper right')
#ax1.set_title('Fittest individual')
ax1.set_title(f"Best Path Cost : {numpy.min(dist)} kms")
ax1.set_xlabel('x (kms)')
ax1.set_ylabel('y (kms)')
ax1.set_xlim([-400, 410])
ax1.set_ylim([-400, 410])
ax1.scatter(CITY_COORD[:, 0],
CITY_COORD[:, 1], c='r', edgecolors='black', alpha=0.85)
solution = max(zip(population, fitness), key=lambda x: x[1])[0]
P = numpy.array([CITY_DICT[s]
for s in solution] + [CITY_DICT[solution[0]]])
ax1.plot(P[:, 0], P[:, 1], '--',c='black', alpha=0.85)
return
try:
#anim = matplotlib.animation.FuncAnimation(
anim =FuncAnimation(
fig, animate, frames=run, interval=50, repeat=False)
anim.save(f'xyz.gif', writer='')
#plt.tight_layout(pad=3.5)
#plt.show()
except AttributeError:
pass
#Ant colony Optimization
class SolveTSPUsingACO:
class Edge:
def __init__(self, a, b, weight, initial_pheromone):
self.a = a
self.b = b
self.weight = weight
self.pheromone = initial_pheromone
class Ant:
def __init__(self, alpha, beta, num_nodes, edges):
self.alpha = alpha
self.beta = beta
self.num_nodes = num_nodes
self.edges = edges
self.tour = None
self.distance = 0.0
def _select_node(self):
roulette_wheel = 0.0
unvisited_nodes = [node for node in range(self.num_nodes) if node not in self.tour]
heuristic_total = 0.0
for unvisited_node in unvisited_nodes:
heuristic_total += self.edges[self.tour[-1]][unvisited_node].weight
for unvisited_node in unvisited_nodes:
roulette_wheel += pow(self.edges[self.tour[-1]][unvisited_node].pheromone, self.alpha) * \
pow((heuristic_total / self.edges[self.tour[-1]][unvisited_node].weight), self.beta)
random_value = random.uniform(0.0, roulette_wheel)
wheel_position = 0.0
for unvisited_node in unvisited_nodes:
wheel_position += pow(self.edges[self.tour[-1]][unvisited_node].pheromone, self.alpha) * \
pow((heuristic_total / self.edges[self.tour[-1]][unvisited_node].weight), self.beta)
if wheel_position >= random_value:
return unvisited_node
def find_tour(self):
self.tour = [random.randint(0, self.num_nodes - 1)]
while len(self.tour) < self.num_nodes:
self.tour.append(self._select_node())
return self.tour
def get_distance(self):
self.distance = 0.0
for i in range(self.num_nodes):
self.distance += self.edges[self.tour[i]][self.tour[(i + 1) % self.num_nodes]].weight
return self.distance
def __init__(self, mode='ACS', colony_size=10, elitist_weight=1.0, min_scaling_factor=0.001, alpha=1.0, beta=3.0,
rho=0.1, pheromone_deposit_weight=1.0, initial_pheromone=1.0, steps=100, nodes=None, labels=None):
self.mode = mode
self.colony_size = colony_size
self.elitist_weight = elitist_weight
self.min_scaling_factor = min_scaling_factor
self.rho = rho
self.pheromone_deposit_weight = pheromone_deposit_weight
self.steps = steps
self.num_nodes = len(nodes)
self.nodes = nodes
self.tours=[]
cities=self.nodes
if labels is not None:
self.labels = labels
else:
self.labels = range(1, self.num_nodes + 1)
self.edges = [[None] * self.num_nodes for _ in range(self.num_nodes)]
for i in range(self.num_nodes):
for j in range(i + 1, self.num_nodes):
self.edges[i][j] = self.edges[j][i] = self.Edge(i, j, math.sqrt(
pow(self.nodes[i][0] - self.nodes[j][0], 2.0) + pow(self.nodes[i][1] - self.nodes[j][1], 2.0)),
initial_pheromone)
self.ants = [self.Ant(alpha, beta, self.num_nodes, self.edges) for _ in range(self.colony_size)]
self.global_best_tour = None
self.global_best_tours =[]
self.global_best_distance = float("inf")
def _add_pheromone(self, tour, distance, weight=1.0):
pheromone_to_add = self.pheromone_deposit_weight / distance
for i in range(self.num_nodes):
self.edges[tour[i]][tour[(i + 1) % self.num_nodes]].pheromone += weight * pheromone_to_add
def _elitist(self):
path=[]
cost=[]
for step in range(self.steps):
self.tours=[]
for ant in self.ants:
self._add_pheromone(ant.find_tour(), ant.get_distance())
#self.tours.append(ant.tour)
l=[]
for i in ant.tour:
l.append(self.nodes[i])
self.tours.append(l)
if ant.distance < self.global_best_distance:
self.global_best_tour = ant.tour
self.global_best_distance = ant.distance
self._add_pheromone(self.global_best_tour, self.global_best_distance, weight=self.elitist_weight)
path.append(self.global_best_tour)
cost.append(self.global_best_distance)
for i in range(self.num_nodes):
for j in range(i + 1, self.num_nodes):
self.edges[i][j].pheromone *= (1.0 - self.rho)
self.bhagwan_bharose(path,cost)
def run(self):
print('Started : {0}'.format(self.mode))
self._elitist()
print('Ended : {0}'.format(self.mode))
print('Sequence : <- {0} ->'.format(' - '.join(str(self.labels[i]) for i in self.global_best_tour)))
print('Total distance travelled to complete the tour : {0}\n'.format(round(self.global_best_distance, 2)))
def plot(self):
webbrowser.open_new_tab('a.html')
def bhagwan_bharose(self,paths, costs,animation_filename="ACO_TSP_Berlin52"):
global xx,yy
fig = plt.figure(figsize=(12, 8))
gs = fig.add_gridspec(2, 3, wspace=0.45, hspace=0.35)
# Plot berlin52 points
ax1 = fig.add_subplot(gs[0, 0])
ax1.scatter(xx,yy, c='r', edgecolors='black')
ax1.set_xlabel('x (kms)')
ax1.set_ylabel('y (kms)')
ax1.set_title('Cities', fontweight='bold', pad=10)
# Plot min cost found per iteration
ax2 = fig.add_subplot(gs[1, 0])
costline, = ax2.plot([], [])
ax2.set_xlabel('Iterations')
ax2.set_ylabel('Distance (kms)')
ax2.set_ylim(3000, 5500)
ax2.set_xlim(0, len(costs)+1)
ax2.set_title('Best path distance in every iteration', fontweight='bold', pad=10)
# Plot best path found per iteration
ax3 = fig.add_subplot(gs[:, 1:])
ax3.scatter(xx, yy, c='r', edgecolors='black')
ax3.set_xlabel('x (kms)')
ax3.set_ylabel('y (kms)')
title = ax3.set_title('Best Path Cost', fontweight='bold', fontsize=13, pad=10)
def init():
pass
def animate(iter):
if iter < len(costs):
costline.set_data(list(range(1, iter+2)), costs[:iter+1])
# print(costline)
if iter > 0 and iter <= len(costs):
ax3.lines.pop(0)
if iter < len(costs):
x = [xx[i] for i in paths[iter]]
y = [yy[j] for j in paths[iter]]
x.append(x[0])
y.append(y[0])
ax3.plot(x, y, '--', alpha=0.9)
title.set_text(f"Best Path Cost : {round(costs[iter], 2)} kms")
elif iter == len(costs):
x = [self.nodes[i][0] for i in self.global_best_tour]
y = [self.nodes[i][1] for i in self.global_best_tour]
x.append(x[0])
y.append(y[0])
ax3.plot(x, y, '-', c='#000000', alpha=0.8, lw=1.5)
# title.set_text(f"Best Path Cost : {round(aco.min_path_cost, 2)} kms")
return costline
anim = FuncAnimation(fig, animate, init_func=init, frames=len(costs)+1+50, interval=50, repeat=False)
anim.save('abc.gif', writer='')
print("Animation saved.")
ga()
_colony_size = 10
_steps = 50
cities=[]
elitist = SolveTSPUsingACO(mode='Elitist', colony_size=_colony_size, steps=_steps, nodes=_nodes)
elitist.run()
elitist.plot()