-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
263 lines (204 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import random
import argparse
import pickle
import numpy as np
from tqdm import tqdm
from timeit import default_timer as timer
from sewar import rmse, ssim, sam, psnr
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from datasets import PatchSet, load_image_pair, transform_image
from models import SwinSTFM
from loss import GeneratorLoss
from utils import AverageMeter
def uiqi(im1, im2, block_size=64, return_map=False):
if len(im1.shape)==3:
return np.array([uiqi(im1[:,:,i], im2[:,:,i], block_size, return_map=return_map) for i in range(im1.shape[2])])
delta_x = np.std(im1, ddof=1)
delta_y = np.std(im2, ddof=1)
delta_xy = np.sum((im1 - np.mean(im1)) * (im2 - np.mean(im2))) / (im1.shape[0] * im1.shape[1] - 1)
mu_x = np.mean(im1)
mu_y = np.mean(im2)
q1 = delta_xy / (delta_x * delta_y)
q2 = 2 * mu_x * mu_y / (mu_x ** 2 + mu_y ** 2)
q3 = 2 * delta_x * delta_y / (delta_x ** 2 + delta_y ** 2)
q = q1 * q2 * q3
return q
def test(opt, model, test_dates, IMAGE_SIZE, PATCH_SIZE):
cur_result = {}
model.eval()
PATCH_STRIDE = PATCH_SIZE // 2
end_h = (IMAGE_SIZE[0] - PATCH_STRIDE) // PATCH_STRIDE * PATCH_STRIDE
end_w = (IMAGE_SIZE[1] - PATCH_STRIDE) // PATCH_STRIDE * PATCH_STRIDE
h_index_list = [i for i in range(0, end_h, PATCH_STRIDE)]
w_index_list = [i for i in range(0, end_w, PATCH_STRIDE)]
if (IMAGE_SIZE[0] - PATCH_STRIDE) % PATCH_STRIDE != 0:
h_index_list.append(IMAGE_SIZE[0] - PATCH_SIZE)
if (IMAGE_SIZE[1] - PATCH_STRIDE) % PATCH_STRIDE != 0:
w_index_list.append(IMAGE_SIZE[1] - PATCH_SIZE)
final_ssim = 0.0
for cur_date in test_dates:
cur_day = int(cur_date.split('_')[1])
if cur_day == 347:
for ref_date in test_dates:
ref_day = int(ref_date.split('_')[1])
if ref_day != cur_day:
images = load_image_pair(opt.root_dir, cur_date, ref_date)
output_image = np.zeros(images[1].shape)
image_mask = np.ones(images[1].shape)
for i in range(4):
negtive_mask = np.where(images[i] < 0)
inf_mask = np.where(images[i] > 10000.)
image_mask[negtive_mask] = 0
image_mask[inf_mask] = 0
for i in range(len(h_index_list)):
for j in range(len(w_index_list)):
h_start = h_index_list[i]
w_start = w_index_list[j]
input_lr = images[0][:, h_start: h_start + PATCH_SIZE, w_start: w_start + PATCH_SIZE]
target_hr = images[1][:, h_start: h_start + PATCH_SIZE, w_start: w_start + PATCH_SIZE]
ref_lr = images[2][:, h_start: h_start + PATCH_SIZE, w_start: w_start + PATCH_SIZE]
ref_hr = images[3][:, h_start: h_start + PATCH_SIZE, w_start: w_start + PATCH_SIZE]
flip_num = 0
rotate_num0 = 0
rotate_num = 0
input_lr, im_mask = transform_image(input_lr, flip_num, rotate_num0, rotate_num)
ref_lr, im_mask = transform_image(ref_lr, flip_num, rotate_num0, rotate_num)
ref_hr, im_mask = transform_image(ref_hr, flip_num, rotate_num0, rotate_num)
input_lr = input_lr.unsqueeze(0).cuda()
ref_lr = ref_lr.unsqueeze(0).cuda()
ref_hr = ref_hr.unsqueeze(0).cuda()
output = model(ref_lr, ref_hr, input_lr)
output = output.squeeze()
# 确定填补图像的四个坐标
h_end = h_start + PATCH_SIZE
w_end = w_start + PATCH_SIZE
cur_h_start = 0
cur_h_end = PATCH_SIZE
cur_w_start = 0
cur_w_end = PATCH_SIZE
if i != 0:
h_start = h_start + PATCH_SIZE // 4
cur_h_start = PATCH_SIZE // 4
if i != len(h_index_list) - 1:
h_end = h_end - PATCH_SIZE // 4
cur_h_end = cur_h_end - PATCH_SIZE // 4
if j != 0:
w_start = w_start + PATCH_SIZE // 4
cur_w_start = PATCH_SIZE // 4
if j != len(w_index_list) - 1:
w_end = w_end - PATCH_SIZE // 4
cur_w_end = cur_w_end - PATCH_SIZE // 4
output_image[:, h_start: h_end, w_start: w_end] = \
output[:, cur_h_start: cur_h_end, cur_w_start: cur_w_end].cpu().detach().numpy()
real_im = images[1] * 0.0001 * image_mask
real_output = (output_image + 1) * 0.5 * image_mask
for real_predict in [real_output]:
cur_result['rmse'] = []
cur_result['ssim'] = []
cur_result['cc'] = []
cur_result['uiqi'] = []
cur_result['ergas'] = 0
for i in range(6):
cur_result['rmse'].append(rmse(real_im[i], real_predict[i]))
cur_result['ssim'].append(ssim(real_im[i], real_predict[i], MAX=1.0)[0])
cur_result['uiqi'].append(uiqi(real_im[i], real_predict[i]))
cur_cc = np.sum((real_im[i] - np.mean(real_im[i])) * (real_predict[i] - np.mean(real_predict[i]))) / \
np.sqrt((np.sum(np.square(real_im[i] - np.mean(real_im[i])))) * np.sum(
np.square(real_predict[i] - np.mean(real_predict[i]))) + 1e-100)
cur_result['cc'].append(cur_cc)
cur_result['ergas'] += rmse(real_im[i], real_predict[i]) ** 2 / (np.mean(real_im[i]) ** 2 + 1e-100)
cur_result['ergas'] = np.sqrt(cur_result['ergas'] / 6.) * 6
cur_result['psnr'] = psnr(real_im, real_predict, MAX=1.0)
cur_im = real_im * 10000.
cur_predict = real_predict * 10000.
cur_result['sam'] = sam(cur_im.transpose(1, 2, 0), cur_predict.transpose(1, 2, 0)) * 180 / np.pi
print('[%s/%s] RMSE: %.4f SSIM: %.4f UIQI: %.4f CC: %.4f ERGAS: %.4f SAM: %.4f PSNR: %.4f' % (
cur_date, ref_date, np.mean(np.array(cur_result['rmse'])),
np.mean(np.array(cur_result['ssim'])), np.mean(np.array(cur_result['uiqi'])),
np.mean(np.array(cur_result['cc'])), cur_result['ergas'], cur_result['sam'],
cur_result['psnr']))
if ref_day == 331:
final_ssim = np.mean(np.array(cur_result['ssim']))
return final_ssim
def train(opt, train_dates, test_dates, IMAGE_SIZE, PATCH_SIZE):
train_set = PatchSet(opt.train_dir, train_dates, IMAGE_SIZE, PATCH_SIZE)
train_loader = DataLoader(dataset=train_set, num_workers=8, batch_size=8, shuffle=True)
model = SwinSTFM()
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('There are %d trainable parameters for generator.' % n_params)
cri_pix = GeneratorLoss()
model.cuda()
cri_pix.cuda()
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=0)
scheculer = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=3)
best_ssim = 0.0
best_epoch = -1
save_dir = '/mnt/datadisk0/cgy/Datasets/SwinSTFM/models/experiment_best'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
for epoch in tqdm(range(opt.num_epochs)):
model.train()
g_loss, batch_time = AverageMeter(), AverageMeter()
batches = len(train_loader)
for item, (data, target, ref_lr, ref_target, gt_mask) in tqdm(enumerate(train_loader)):
t_start = timer()
data = data.cuda()
target = target.cuda()
ref_lr = ref_lr.cuda()
ref_target = ref_target.cuda()
gt_mask = gt_mask.float().cuda()
predict_fine = model(ref_lr, ref_target, data)
optimizer.zero_grad()
# pixel loss
l_total = cri_pix(predict_fine * gt_mask, target * gt_mask, is_ds=False)
l_total.backward()
optimizer.step()
g_loss.update(l_total.cpu().item())
t_end = timer()
batch_time.update(round(t_end - t_start, 4))
if item % 200 == 199:
print('[%d/%d][%d/%d] G-Loss: %.4f Batch_Time: %.4f' % (
epoch + 1, opt.num_epochs, item + 1, batches, g_loss.avg, batch_time.avg,
))
print('[%d/%d][%d/%d] G-Loss: %.4f Batch_Time: %.4f' % (
epoch + 1, opt.num_epochs, batches, batches, g_loss.avg, batch_time.avg,
))
final_ssim = test(opt, model, test_dates, IMAGE_SIZE, PATCH_SIZE)
scheculer.step(final_ssim)
if final_ssim > best_ssim:
best_ssim = final_ssim
best_epoch = epoch
torch.save(model.state_dict(), save_dir + '/epoch_best.pth')
torch.save(model.state_dict(), save_dir + '/epoch_%d.pth' % (epoch + 1))
print('Best Epoch is %d' % (best_epoch + 1), 'SSIM is %.4f' % best_ssim)
print('------------------')
def main():
random.seed(2021)
np.random.seed(2021)
torch.manual_seed(2021)
torch.cuda.manual_seed_all(2021)
torch.backends.cudnn.deterministic = True
parser = argparse.ArgumentParser(description='Train Super Resolution Models')
parser.add_argument('--image_size', default=[2720, 3200], type=int, help='the image size (height, width)')
parser.add_argument('--patch_size', default=256, type=int, help='training images crop size')
parser.add_argument('--num_epochs', default=60, type=int, help='train epoch number')
parser.add_argument('--root_dir', default='/mnt/datadisk0/cgy/Datasets/LGC', help='Datasets root directory')
parser.add_argument('--train_dir', default='/mnt/datadisk0/cgy/Datasets/LGC_Train', help='Datasets train directory')
opt = parser.parse_args()
IMAGE_SIZE = opt.image_size
PATCH_SIZE = opt.patch_size
# Loading Datasets
train_dates = []
test_dates = []
for dir_name in os.listdir(opt.root_dir):
cur_day = int(dir_name.split('_')[1])
if cur_day not in [331, 347, 363]:
train_dates.append(dir_name)
else:
test_dates.append(dir_name)
train(opt, train_dates, test_dates, IMAGE_SIZE, PATCH_SIZE)
if __name__ == '__main__':
main()