-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathInference.py
112 lines (81 loc) · 3.01 KB
/
Inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
import tqdm
from torch.utils.data import DataLoader
from utils.config import DefaultConfig
from models.net_builder import net_builder
from dataprepare.dataloader import DatasetCFP
from torch.nn import functional as F
import csv
def val(val_dataloader, model, args, Normal_average=0.0,device=None):
print('\n')
model.eval()
tbar = tqdm.tqdm(val_dataloader, desc='\r')
All_Infor = []
with torch.no_grad():
for i, img_data_list in enumerate(tbar):
Fundus_img = img_data_list[0].to(device)
image_files = img_data_list[2]
pred = model.forward(Fundus_img)
evidences = [F.softplus(pred)]
alpha = dict()
alpha[0] = evidences[0] + 1
S = torch.sum(alpha[0], dim=1, keepdim=True)
E = alpha[0] - 1
b = E / (S.expand(E.shape))
u = args.num_classes / S
batch = b.shape[0]
pred_con = pred.argmax(dim=-1)
for idx_bs_u in range(batch):
if u[idx_bs_u] >= Normal_average:
print("")
All_Infor.append([
'/'.join(image_files[idx_bs_u].split('/')[-2:]),
pred_con.cpu().detach().float().numpy()[idx_bs_u],
"Unreliable"
]
)
else:
All_Infor.append([
'/'.join(image_files[idx_bs_u].split('/')[-2:]),
pred_con.cpu().detach().float().numpy()[idx_bs_u],
"Reliable"
]
)
return All_Infor
def main(args=None):
args.net_work = "ResUnNet50"
args.trained_model_path = './Trained/UIOS.pth.tar'
# bulid model
device = torch.device('cuda:{}'.format(args.cuda))
args.device = device
model = net_builder(args.net_work, args.num_classes).to(device)
print('Model have been loaded!,you chose the ' + args.net_work + '!')
# load trained model for test
print("=> loading trained model '{}'".format(args.trained_model_path))
checkpoint = torch.load(
args.trained_model_path)
model.load_state_dict(checkpoint['state_dict'])
print('Done!')
Thres = 0.1158
Results_Heads = ["Imagefiles", 'Prediction results','Reliability']
args.root = "./Datasets/OOD_Test"
csv_file = "./Datasets/Pred_test.csv"
test_loader = DataLoader(DatasetCFP(
root=args.root,
mode='test',
data_file="Datasets/{}.csv".format(csv_file),
),
batch_size=args.batch_size, shuffle=False, pin_memory=True)
Results_Contents = val(test_loader, model, args,
Normal_average=Thres, device=device)
with open(
"PredictionResults/Results.csv", 'w',
newline='') as f:
writer = csv.writer(f)
writer.writerow(Results_Heads)
writer.writerows(
Results_Contents
)
if __name__ == '__main__':
args = DefaultConfig()
main(args=args)