-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
142 lines (110 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
from torchvision.datasets import CIFAR10
from torch.nn import DataParallel
from torch.optim.lr_scheduler import MultiStepLR
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import torch
import csv, sys, os, time, argparse
from rcnn import RCNN
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1"
def test(model, testloader, criterion):
model.eval()
correct, total = 0, 0
loss, counter = 0, 0
with torch.no_grad():
for (images, labels) in testloader:
images = images.cuda()
labels = labels.cuda()
bs, ncrops, c, h, w = images.size()
outputs = model(images.view(-1, c, h, w))
result_avg = outputs.view(bs, ncrops, -1).mean(1)
_, predicted = torch.max(result_avg.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss += criterion(result_avg, labels).item()
counter += 1
return loss / counter, correct / total
def load_data(datadir, batch_size, GPU_COUNT):
transform_train = transforms.Compose([
transforms.RandomCrop(24),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
transform_test = transforms.Compose([
transforms.TenCrop(24),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda crops: torch.stack([transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))(crop) for crop in crops]))])
trainset = CIFAR10(datadir, transform = transform_train, train = True, download=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size = batch_size * GPU_COUNT, shuffle = True, num_workers = 32)
testset = CIFAR10(datadir, transform = transform_test, train = False, download=True)
testloader = torch.utils.data.DataLoader(testset, batch_size = batch_size * GPU_COUNT, shuffle = False, num_workers = 32)
return trainloader, testloader
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train RCNN')
parser.add_argument('-n', dest='K', type=int, default = 96, help='the parameter K for RCNN')
parser.add_argument('-b', dest='batch_size', type=int, default=64, help='the batch size in just one gpu, * GPU_COUNT')
parser.add_argument('-e', dest='epoch', type=int, default=200, help='the training epoch')
parser.add_argument('-s', dest='save_dir', type=str, default="log.csv", help='the model parameters to be saved')
parser.add_argument('-l', dest='training_log', type=str, default="weights.pkl", help='the logs to be saved')
args = parser.parse_args()
# write header
with open(args.save_dir, 'w') as f:
writer = csv.writer(f)
writer.writerow(["iteration", "train_loss", "val_loss", "acc", "val_acc"])
# build model and optimizer
model = RCNN(3, 10, args.K)
model.cuda()
model = nn.DataParallel(model)
# model.load_state_dict(torch.load('160_weights_noagu.pkl'))
GPU_COUNT = torch.cuda.device_count()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr = 1e-1, weight_decay = 1e-4, momentum = 0.9, nesterov = True)
epoch = args.epoch
scheduler = MultiStepLR(optimizer, milestones=[int(epoch/2),int(epoch*3/4),int(epoch*7/8)], gamma=0.1)
trainloader, testloader = load_data("~/Datasets", args.batch_size, GPU_COUNT)
# train
i = 0
correct, total = 0, 0
train_loss, counter = 0, 0
for epoch in range(0, args.epoch):
scheduler.step()
start_time = time.time()
# iteration over all train data
for data in trainloader:
# shift to train mode
model.train()
# get the inputs
inputs, labels = data
inputs = inputs.cuda()
labels = labels.cuda()
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# count acc,loss on trainset
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
train_loss += loss.item()
counter += 1
if i % 200 == 0:
# get acc,loss on trainset
acc = correct / total
train_loss /= counter
# test
val_loss, val_acc = test(model, testloader, criterion)
print('iteration %d , epoch %d: loss: %.4f val_loss: %.4f acc: %.4f val_acc: %.4f'
%(i, epoch, train_loss, val_loss, acc, val_acc))
# save logs and weights
with open(args.training_log, 'a') as f:
writer = csv.writer(f)
writer.writerow([i, train_loss, val_loss, acc, val_acc])
torch.save(model.state_dict(), args.save_dir)
# reset counters
correct, total = 0, 0
train_loss, counter = 0, 0
i += 1
print("current time cost: ", time.time() - start_time)