-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtest_with_track.py
executable file
·344 lines (281 loc) · 11.4 KB
/
test_with_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# OS libraries
import os
import cv2
import glob
import copy
import math
import queue
import argparse
import scipy.misc
import numpy as np
from tqdm import tqdm
from PIL import Image
# Pytorch libraries
import torch
import torch.nn as nn
# Customized libraries
from libs.test_utils import *
from libs.model import transform
from libs.vis_utils import norm_mask
import libs.transforms_pair as transforms
from libs.model import Model_switchGTfixdot_swCC_Res as Model
from libs.track_utils import seg2bbox, draw_bbox, match_ref_tar
from libs.track_utils import squeeze_all, seg2bbox_v2, bbox_in_tar_scale
############################## helper functions ##############################
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type = int, default = 1,
help = "batch size")
parser.add_argument("-o","--out_dir", type = str,default="results_with_track/",
help = "output path")
parser.add_argument("--device", type = int, default = 5,
help="0~4 for single GPU, 5 for dataparallel.")
parser.add_argument("-c","--checkpoint_dir",type = str,
default = "weights/checkpoint_latest.pth.tar",
help = "checkpoints path")
parser.add_argument("-s", "--scale_size", type = int, nargs = '+',
help = "scale size, either a single number for short edge, or a pair for height and width")
parser.add_argument("--pre_num", type = int, default = 7,
help = "preceding frame numbers")
parser.add_argument("--temp", type = float, default = 1,
help = "softmax temperature")
parser.add_argument("-t", "--topk", type = int, default = 5,
help = "accumulate label from top k neighbors")
parser.add_argument("-d", "--davis_dir", type = str,
default = "/workspace/DAVIS/",
help = "davis dataset path")
print("Begin parser arguments.")
args = parser.parse_args()
args.is_train = False
args.multiGPU = args.device == 5
if not args.multiGPU:
torch.cuda.set_device(args.device)
args.val_txt = os.path.join(args.davis_dir, "ImageSets/2017/val.txt")
args.davis_dir = os.path.join(args.davis_dir, "JPEGImages/480p/")
return args
def vis_bbox(im, bbox, name, coords, seg):
im = im * 128 + 128
im = im.squeeze().permute(1,2,0).cpu().numpy().astype(np.uint8)
im = cv2.cvtColor(im, cv2.COLOR_LAB2BGR)
fg_idx = seg.nonzero()
im = draw_bbox(im, bbox, (0,0,255))
for cnt in range(coords.size(0)):
coord_i = coords[cnt]
cv2.circle(im, (int(coord_i[0]*8), int(coord_i[1]*8)), 2, (0,255,0), thickness=-1)
cv2.imwrite(name, im)
############################## tracking functions ##############################
def adjust_bbox(bbox_now, bbox_pre, a, h, w):
"""
Adjust a bounding box w.r.t previous frame,
assuming objects don't go under abrupt changes.
"""
for cnt in bbox_pre.keys():
if(cnt == 0):
continue
if(cnt in bbox_now and bbox_pre[cnt] is not None and bbox_now[cnt] is not None):
bbox_now_h = (bbox_now[cnt].top + bbox_now[cnt].bottom) / 2.0
bbox_now_w = (bbox_now[cnt].left + bbox_now[cnt].right) / 2.0
bbox_now_height_ = bbox_now[cnt].bottom - bbox_now[cnt].top
bbox_now_width_ = bbox_now[cnt].right - bbox_now[cnt].left
bbox_pre_height = bbox_pre[cnt].bottom - bbox_pre[cnt].top
bbox_pre_width = bbox_pre[cnt].right - bbox_pre[cnt].left
bbox_now_height = a * bbox_now_height_ + (1 - a) * bbox_pre_height
bbox_now_width = a * bbox_now_width_ + (1 - a) * bbox_pre_width
bbox_now[cnt].left = math.floor(bbox_now_w - bbox_now_width / 2.0)
bbox_now[cnt].right = math.ceil(bbox_now_w + bbox_now_width / 2.0)
bbox_now[cnt].top = math.floor(bbox_now_h - bbox_now_height / 2.0)
bbox_now[cnt].bottom = math.ceil(bbox_now_h + bbox_now_height / 2.0)
bbox_now[cnt].left = max(0, bbox_now[cnt].left)
bbox_now[cnt].right = min(w, bbox_now[cnt].right)
bbox_now[cnt].top = max(0, bbox_now[cnt].top)
bbox_now[cnt].bottom = min(h, bbox_now[cnt].bottom)
return bbox_now
def bbox_next_frame(img_ref, seg_ref, img_tar, bbox_ref):
"""
Match bbox from the reference frame to the target frame
"""
F_ref, F_tar = forward(img_ref, img_tar, model, seg_ref, return_feature=True)
seg_ref = seg_ref.squeeze(0)
F_ref, F_tar = squeeze_all(F_ref, F_tar)
c, h, w = F_ref.size()
# get coordinates of each point in the target frame
coords_ref_tar = match_ref_tar(F_ref, F_tar, seg_ref, args.temp)
# coordinates -> bbox
bbox_tar = bbox_in_tar_scale(coords_ref_tar, bbox_ref, h, w)
# adjust bbox
bbox_tar = adjust_bbox(bbox_tar, bbox_ref, 0.1, h, w)
return bbox_tar, coords_ref_tar
def recoginition(img_ref, img_tar, bbox_ref, bbox_tar, seg_ref, model):
"""
propagate from bbox in the reference frame to bbox in the target frame
"""
F_ref, F_tar = forward(img_ref, img_tar, model, seg_ref, return_feature=True)
seg_ref = seg_ref.squeeze()
_, c, h, w = F_tar.size()
seg_pred = torch.zeros(seg_ref.size())
# calculate affinity only once to save time
aff_whole = torch.mm(F_ref.view(c,-1).permute(1,0), F_tar.view(c,-1))
aff_whole = torch.nn.functional.softmax(aff_whole * args.temp, dim=0)
for cnt, br in bbox_ref.items():
if not (cnt in bbox_tar):
continue
bt = bbox_tar[cnt]
if(br is None or bt is None):
continue
seg_cnt = seg_ref[cnt]
# affinity between two patches
seg_ref_box = seg_cnt[br.top:br.bottom, br.left:br.right]
seg_ref_box = seg_ref_box.unsqueeze(0).unsqueeze(0)
h, w = F_ref.size(2), F_ref.size(3)
mask = torch.zeros(h,w)
mask[br.top:br.bottom, br.left:br.right] = 1
mask = mask.view(-1)
aff_row = aff_whole[mask.nonzero().squeeze(), :]
h, w = F_tar.size(2), F_tar.size(3)
mask = torch.zeros(h,w)
mask[bt.top:bt.bottom, bt.left:bt.right] = 1
mask = mask.view(-1)
aff = aff_row[:, mask.nonzero().squeeze()]
aff = aff.unsqueeze(0)
seg_tar_box = transform_topk(aff,seg_ref_box.cuda(),k=args.topk,
h2 = bt.bottom - bt.top,w2 = bt.right - bt.left)
seg_pred[cnt, bt.top:bt.bottom, bt.left:bt.right] = seg_tar_box
return seg_pred
def disappear(seg,bbox_ref,bbox_tar=None):
"""
Check if bbox disappear in the target frame.
"""
b,c,h,w = seg.size()
for cnt in range(c):
if(torch.sum(seg[:,cnt,:,:]) < 3 or (not (cnt in bbox_ref))):
return True
if(bbox_ref[cnt] is None):
return True
if(bbox_ref[cnt].right - bbox_ref[cnt].left < 3 or bbox_ref[cnt].bottom - bbox_ref[cnt].top < 3):
return True
if(bbox_tar is not None):
if(cnt not in bbox_tar.keys()):
return True
if(bbox_tar[cnt] is None):
return True
if(bbox_tar[cnt].right - bbox_tar[cnt].left < 3 or bbox_tar[cnt].bottom - bbox_tar[cnt].top < 3):
return True
return False
############################## testing functions ##############################
def forward(frame1, frame2, model, seg, return_feature=False):
n, c, h, w = frame1.size()
frame1_gray = frame1[:,0].view(n,1,h,w)
frame2_gray = frame2[:,0].view(n,1,h,w)
frame1_gray = frame1_gray.repeat(1,3,1,1)
frame2_gray = frame2_gray.repeat(1,3,1,1)
output = model(frame1_gray, frame2_gray, frame1, frame2)
if(return_feature):
return output[-2], output[-1]
aff = output[2]
frame2_seg = transform_topk(aff,seg.cuda(),k=args.topk)
return frame2_seg
def test(model, frame_list, video_dir, first_seg, large_seg, first_bbox, seg_ori):
video_dir = os.path.join(video_dir)
video_nm = video_dir.split('/')[-1]
video_folder = os.path.join(args.out_dir, video_nm)
os.makedirs(video_folder, exist_ok = True)
os.makedirs(os.path.join(video_folder, 'track'), exist_ok = True)
transforms = create_transforms()
# The queue stores `pre_num` preceding frames
que = queue.Queue(args.pre_num)
# frame 1
frame1, ori_h, ori_w = read_frame(frame_list[0], transforms, args.scale_size)
n, c, h, w = frame1.size()
# saving first segmentation
out_path = os.path.join(video_folder,"00000.png")
imwrite_indexed(out_path, seg_ori)
coords = first_seg[0,1].nonzero()
coords = coords.flip(1)
for cnt in tqdm(range(1,len(frame_list))):
frame_tar, ori_h, ori_w = read_frame(frame_list[cnt], transforms, args.scale_size)
with torch.no_grad():
tmp_list = list(que.queue)
if(len(tmp_list) > 0):
pair = tmp_list[-1]
framei = pair[0]
segi = pair[1]
bbox_pre = pair[2]
else:
bbox_pre = first_bbox
framei = frame1
segi = first_seg
_, segi_int = torch.max(segi, dim=1)
segi = to_one_hot(segi_int)
bbox_tar, coords_ref_tar = bbox_next_frame(framei, segi, frame_tar, bbox_pre)
if(bbox_tar is not None):
if(1 in bbox_tar):
tmp = copy.deepcopy(bbox_tar[1])
if(tmp is not None):
tmp.upscale(8)
vis_bbox(frame_tar, tmp, os.path.join(video_folder, 'track', 'frame'+str(cnt+1)+'.png'), coords_ref_tar[1], segi[0,1,:,:])
frame_tar_acc = recoginition(frame1, frame_tar, first_bbox, bbox_tar, first_seg, model)
else:
frame_tar_acc = forward(frame1, frame_tar, model, first_seg)
frame_tar_acc = frame_tar_acc.cpu()
# previous 7 frames
tmp_queue = list(que.queue)
for pair in tmp_queue:
framei = pair[0]
segi = pair[1]
bboxi = pair[2]
if(bbox_tar is None or disappear(segi, bboxi, bbox_tar)):
frame_tar_est_i = forward(framei, frame_tar, model, segi)
frame_tar_est_i = frame_tar_est_i.cpu()
else:
frame_tar_est_i = recoginition(framei, frame_tar, bboxi, bbox_tar, segi, model)
frame_tar_acc += frame_tar_est_i.cpu().view(frame_tar_acc.size())
frame_tar_avg = frame_tar_acc / (1 + len(tmp_queue))
frame_nm = frame_list[cnt].split('/')[-1].replace(".jpg",".png")
out_path = os.path.join(video_folder,frame_nm)
# upsampling & argmax
if(frame_tar_avg.dim() == 3):
frame_tar_avg = frame_tar_avg.unsqueeze(0)
elif(frame_tar_avg.dim() == 2):
frame_tar_avg = frame_tar_avg.unsqueeze(0).unsqueeze(0)
frame_tar_up = torch.nn.functional.interpolate(frame_tar_avg,scale_factor=8,mode='bilinear')
frame_tar_up = frame_tar_up.squeeze()
frame_tar_up = norm_mask(frame_tar_up.squeeze())
_, frame_tar_seg = torch.max(frame_tar_up.squeeze(), dim=0)
frame_tar_seg = frame_tar_seg.squeeze().cpu().numpy()
frame_tar_seg = np.array(frame_tar_seg, dtype=np.uint8)
frame_tar_seg = scipy.misc.imresize(frame_tar_seg, (ori_h, ori_w), "nearest")
imwrite_indexed(out_path,frame_tar_seg)
if(que.qsize() == args.pre_num):
que.get()
seg = copy.deepcopy(frame_tar_avg.squeeze())
frame, ori_h, ori_w = read_frame(frame_list[cnt], transforms, args.scale_size)
bbox_tar = seg2bbox_v2(frame_tar_up.cpu(), bbox_pre)
bbox_tar = adjust_bbox(bbox_tar, bbox_pre, 0.1, h, w)
que.put([frame,seg.unsqueeze(0),bbox_tar])
if(__name__ == '__main__'):
args = parse_args()
with open(args.val_txt) as f:
lines = f.readlines()
f.close()
model = Model(pretrainRes=False, temp = args.temp, uselayer=4)
if(args.multiGPU):
model = nn.DataParallel(model)
checkpoint = torch.load(args.checkpoint_dir)
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{} ({})' (epoch {})"
.format(args.checkpoint_dir, best_loss, checkpoint['epoch']))
model.cuda()
model.eval()
for cnt,line in enumerate(lines):
video_nm = line.strip()
print('[{:n}/{:n}] Begin to segmentate video {}.'.format(cnt,len(lines),video_nm))
video_dir = os.path.join(args.davis_dir, video_nm)
frame_list = read_frame_list(video_dir)
seg_dir = frame_list[0].replace("JPEGImages","Annotations")
seg_dir = seg_dir.replace("jpg","png")
large_seg, first_seg, seg_ori = read_seg(seg_dir, args.scale_size)
first_bbox = seg2bbox(large_seg, margin=0.6)
for k,v in first_bbox.items():
v.upscale(0.125)
test(model, frame_list, video_dir, first_seg, large_seg, first_bbox, seg_ori)