-
Notifications
You must be signed in to change notification settings - Fork 4
/
optimization.py
666 lines (544 loc) · 25.8 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
"""optimize over a network structure."""
import argparse
import logging
import os, glob
import time
from collections import defaultdict, namedtuple
from itertools import accumulate
from typing import Optional
import matplotlib.pyplot as plt
import numpy as np
import FastGeodis
import open3d as o3d
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
# ANCHOR: visualization as in the paper
DEFAULT_TRANSITIONS = (15, 6, 4, 11, 13, 6)
def make_colorwheel(transitions: tuple=DEFAULT_TRANSITIONS) -> np.ndarray:
"""Creates a colorwheel (borrowed/modified from flowpy).
A colorwheel defines the transitions between the six primary hues:
Red(255, 0, 0), Yellow(255, 255, 0), Green(0, 255, 0), Cyan(0, 255, 255), Blue(0, 0, 255) and Magenta(255, 0, 255).
Args:
transitions: Contains the length of the six transitions, based on human color perception.
Returns:
colorwheel: The RGB values of the transitions in the color space.
Notes:
For more information, see:
https://web.archive.org/web/20051107102013/http://members.shaw.ca/quadibloc/other/colint.htm
http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
"""
colorwheel_length = sum(transitions)
# The red hue is repeated to make the colorwheel cyclic
base_hues = map(
np.array, ([255, 0, 0], [255, 255, 0], [0, 255, 0], [0, 255, 255], [0, 0, 255], [255, 0, 255], [255, 0, 0])
)
colorwheel = np.zeros((colorwheel_length, 3), dtype="uint8")
hue_from = next(base_hues)
start_index = 0
for hue_to, end_index in zip(base_hues, accumulate(transitions)):
transition_length = end_index - start_index
colorwheel[start_index:end_index] = np.linspace(hue_from, hue_to, transition_length, endpoint=False)
hue_from = hue_to
start_index = end_index
return colorwheel
def flow_to_rgb(
flow: np.ndarray,
flow_max_radius: Optional[float]=None,
background: Optional[str]="bright",
) -> np.ndarray:
"""Creates a RGB representation of an optical flow (borrowed/modified from flowpy).
Args:
flow: scene flow.
flow[..., 0] should be the x-displacement
flow[..., 1] should be the y-displacement
flow[..., 2] should be the z-displacement
flow_max_radius: Set the radius that gives the maximum color intensity, useful for comparing different flows.
Default: The normalization is based on the input flow maximum radius.
background: States if zero-valued flow should look 'bright' or 'dark'.
Returns: An array of RGB colors.
"""
valid_backgrounds = ("bright", "dark")
if background not in valid_backgrounds:
raise ValueError(f"background should be one the following: {valid_backgrounds}, not {background}.")
wheel = make_colorwheel()
# For scene flow, it's reasonable to assume displacements in x and y directions only for visualization pursposes.
complex_flow = flow[..., 0] + 1j * flow[..., 1]
radius, angle = np.abs(complex_flow), np.angle(complex_flow)
if flow_max_radius is None:
flow_max_radius = np.max(radius)
if flow_max_radius > 0:
radius /= flow_max_radius
ncols = len(wheel)
# Map the angles from (-pi, pi] to [0, 2pi) to [0, ncols - 1)
angle[angle < 0] += 2 * np.pi
angle = angle * ((ncols - 1) / (2 * np.pi))
# Make the wheel cyclic for interpolation
wheel = np.vstack((wheel, wheel[0]))
# Interpolate the hues
(angle_fractional, angle_floor), angle_ceil = np.modf(angle), np.ceil(angle)
angle_fractional = angle_fractional.reshape((angle_fractional.shape) + (1,))
float_hue = (
wheel[angle_floor.astype(np.int32)] * (1 - angle_fractional) + wheel[angle_ceil.astype(np.int32)] * angle_fractional
)
ColorizationArgs = namedtuple(
'ColorizationArgs', ['move_hue_valid_radius', 'move_hue_oversized_radius', 'invalid_color']
)
def move_hue_on_V_axis(hues, factors):
return hues * np.expand_dims(factors, -1)
def move_hue_on_S_axis(hues, factors):
return 255. - np.expand_dims(factors, -1) * (255. - hues)
if background == "dark":
parameters = ColorizationArgs(
move_hue_on_V_axis, move_hue_on_S_axis, np.array([255, 255, 255], dtype=np.float32)
)
else:
parameters = ColorizationArgs(move_hue_on_S_axis, move_hue_on_V_axis, np.array([0, 0, 0], dtype=np.float32))
colors = parameters.move_hue_valid_radius(float_hue, radius)
oversized_radius_mask = radius > 1
colors[oversized_radius_mask] = parameters.move_hue_oversized_radius(
float_hue[oversized_radius_mask],
1 / radius[oversized_radius_mask]
)
return colors.astype(np.uint8)
def custom_draw_geometry_with_key_callback(pcds):
def change_background_to_black(vis):
opt = vis.get_render_option()
opt.background_color = np.asarray([76/255, 86/255, 106/255])
return False
def load_render_option(vis):
vis.get_render_option().load_from_json(
'render_option.json')
return False
def capture_depth(vis):
depth = vis.capture_depth_float_buffer()
plt.imshow(np.asarray(depth))
plt.show()
return False
def capture_image(vis):
image = vis.capture_screen_float_buffer()
plt.imshow(np.asarray(image))
plt.show()
return False
key_to_callback = {}
key_to_callback[ord("K")] = change_background_to_black
key_to_callback[ord("R")] = load_render_option
key_to_callback[ord(",")] = capture_depth
key_to_callback[ord(".")] = capture_image
o3d.visualization.draw_geometries_with_key_callbacks(pcds, key_to_callback)
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.0)
# ANCHOR: metrics computation, follow NSFP metrics....
def scene_flow_metrics(pred, labels):
l2_norm = torch.sqrt(torch.sum((pred - labels) ** 2, 2)).cpu() # Absolute distance error.
labels_norm = torch.sqrt(torch.sum(labels * labels, 2)).cpu()
relative_err = l2_norm / (labels_norm + 1e-20)
EPE3D = torch.mean(l2_norm).item() # Mean absolute distance error
# NOTE: Acc_5
error_lt_5 = torch.BoolTensor((l2_norm < 0.05))
relative_err_lt_5 = torch.BoolTensor((relative_err < 0.05))
acc3d_strict = torch.mean((error_lt_5 | relative_err_lt_5).float()).item()
# NOTE: Acc_10
error_lt_10 = torch.BoolTensor((l2_norm < 0.1))
relative_err_lt_10 = torch.BoolTensor((relative_err < 0.1))
acc3d_relax = torch.mean((error_lt_10 | relative_err_lt_10).float()).item()
# NOTE: outliers
l2_norm_gt_3 = torch.BoolTensor(l2_norm > 0.3)
relative_err_gt_10 = torch.BoolTensor(relative_err > 0.1)
outlier = torch.mean((l2_norm_gt_3 | relative_err_gt_10).float()).item()
# NOTE: angle error
unit_label = labels / labels.norm(dim=2, keepdim=True)
unit_pred = pred / pred.norm(dim=2, keepdim=True)
eps = 1e-7
dot_product = (unit_label * unit_pred).sum(2).clamp(min=-1+eps, max=1-eps)
dot_product[dot_product != dot_product] = 0 # Remove NaNs
angle_error = torch.acos(dot_product).mean().item()
return EPE3D, acc3d_strict, acc3d_relax, outlier, angle_error
# ANCHOR: timer!
class Timers(object):
def __init__(self):
self.timers = defaultdict(Timer)
def tic(self, key):
self.timers[key].tic()
def toc(self, key):
self.timers[key].toc()
def print(self, key=None):
if key is None:
for k, v in self.timers.items():
print("Average time for {:}: {:}".format(k, v.avg()))
else:
print("Average time for {:}: {:}".format(key, self.timers[key].avg()))
def get_avg(self, key):
return self.timers[key].avg()
class Timer(object):
def __init__(self):
self.reset()
def tic(self):
self.start_time = time.time()
def toc(self, average=True):
self.diff = time.time() - self.start_time
self.total_time += self.diff
self.calls += 1
def total(self):
return self.total_time
def avg(self):
return self.total_time / float(self.calls)
def reset(self):
self.total_time = 0.
self.calls = 0
self.start_time = 0.
self.diff = 0.
# ANCHOR: early stopping strategy
class EarlyStopping(object):
def __init__(self, mode='min', min_delta=0, patience=10, percentage=False):
self.mode = mode
self.min_delta = min_delta
self.patience = patience
self.best = None
self.num_bad_epochs = 0
self.is_better = None
self._init_is_better(mode, min_delta, percentage)
if patience == 0:
self.is_better = lambda a, b: True
self.step = lambda a: False
def step(self, metrics):
if self.best is None:
self.best = metrics
return False
if torch.isnan(metrics):
return True
if self.is_better(metrics, self.best):
self.num_bad_epochs = 0
self.best = metrics
else:
self.num_bad_epochs += 1
if self.num_bad_epochs >= self.patience:
return True
return False
def _init_is_better(self, mode, min_delta, percentage):
if mode not in {'min', 'max'}:
raise ValueError('mode ' + mode + ' is unknown!')
if not percentage:
if mode == 'min':
self.is_better = lambda a, best: a < best - min_delta
if mode == 'max':
self.is_better = lambda a, best: a > best + min_delta
else:
if mode == 'min':
self.is_better = lambda a, best: a < best - (
best * min_delta / 100)
if mode == 'max':
self.is_better = lambda a, best: a > best + (
best * min_delta / 100)
class DT:
def __init__(self, pts, pmin, pmax, grid_factor, device='cuda:0'):
self.device = device
self.grid_factor = grid_factor
sample_x = ((pmax[0] - pmin[0]) * grid_factor).ceil().int() + 2
sample_y = ((pmax[1] - pmin[1]) * grid_factor).ceil().int() + 2
sample_z = ((pmax[2] - pmin[2]) * grid_factor).ceil().int() + 2
self.Vx = torch.linspace(0, sample_x, sample_x+1, device=self.device)[:-1] / grid_factor + pmin[0]
self.Vy = torch.linspace(0, sample_y, sample_y+1, device=self.device)[:-1] / grid_factor + pmin[1]
self.Vz = torch.linspace(0, sample_z, sample_z+1, device=self.device)[:-1] / grid_factor + pmin[2]
# NOTE: build a binary image first, with 0-value occuppied points
grid_x, grid_y, grid_z = torch.meshgrid(self.Vx, self.Vy, self.Vz, indexing="ij")
self.grid = torch.stack([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1), grid_z.unsqueeze(-1)], -1).float().squeeze()
H, W, D, _ = self.grid.size()
pts_mask = torch.ones(H, W, D, device=device)
self.pts_sample_idx_x = ((pts[:,0:1] - self.Vx[0]) * self.grid_factor).round()
self.pts_sample_idx_y = ((pts[:,1:2] - self.Vy[0]) * self.grid_factor).round()
self.pts_sample_idx_z = ((pts[:,2:3] - self.Vz[0]) * self.grid_factor).round()
pts_mask[self.pts_sample_idx_x.long(), self.pts_sample_idx_y.long(), self.pts_sample_idx_z.long()] = 0.
iterations = 1
image_pts = torch.zeros(H, W, D, device=device).unsqueeze(0).unsqueeze(0)
pts_mask = pts_mask.unsqueeze(0).unsqueeze(0)
self.D = FastGeodis.generalised_geodesic3d(
image_pts, pts_mask, [1./self.grid_factor, 1./self.grid_factor, 1./self.grid_factor], 1e10, 0.0, iterations
).squeeze()
def torch_bilinear_distance(self, Y):
H, W, D = self.D.size()
target = self.D[None, None, ...]
sample_x = ((Y[:,0:1] - self.Vx[0]) * self.grid_factor).clip(0, H-1)
sample_y = ((Y[:,1:2] - self.Vy[0]) * self.grid_factor).clip(0, W-1)
sample_z = ((Y[:,2:3] - self.Vz[0]) * self.grid_factor).clip(0, D-1)
sample = torch.cat([sample_x, sample_y, sample_z], -1)
# NOTE: normalize samples to [-1, 1]
sample = 2 * sample
sample[...,0] = sample[...,0] / (H-1)
sample[...,1] = sample[...,1] / (W-1)
sample[...,2] = sample[...,2] / (D-1)
sample = sample -1
sample_ = torch.cat([sample[...,2:3], sample[...,1:2], sample[...,0:1]], -1)
# NOTE: reshape to match 5D volumetric input
dist = F.grid_sample(target, sample_.view(1,-1,1,1,3), mode="bilinear", align_corners=True).view(-1)
return dist
class Neural_Prior(nn.Module):
def __init__(self, input_size=1000, dim_x=3, filter_size=128, act_fn='relu', layer_size=8, output_feat=False):
super().__init__()
self.input_size = input_size
self.layer_size = layer_size
self.output_feat = output_feat
self.nn_layers = nn.ModuleList([])
# input layer (default: xyz -> 128)
if layer_size >= 1:
self.nn_layers.append(nn.Sequential(nn.Linear(dim_x, filter_size)))
if act_fn == 'relu':
self.nn_layers.append(nn.ReLU())
elif act_fn == 'sigmoid':
self.nn_layers.append(nn.Sigmoid())
for _ in range(layer_size-1):
self.nn_layers.append(nn.Sequential(nn.Linear(filter_size, filter_size)))
if act_fn == 'relu':
self.nn_layers.append(nn.ReLU())
elif act_fn == 'sigmoid':
self.nn_layers.append(nn.Sigmoid())
self.nn_layers.append(nn.Linear(filter_size, dim_x))
else:
self.nn_layers.append(nn.Sequential(nn.Linear(dim_x, dim_x)))
def forward(self, x):
""" points -> features
[B, N, 3] -> [B, K]
"""
if self.output_feat:
feat = []
for layer in self.nn_layers:
x = layer(x)
if self.output_feat and layer == nn.Linear:
feat.append(x)
if self.output_feat:
return x, feat
else:
return x
def solver(
pc1: torch.Tensor,
pc2: torch.Tensor,
flow: torch.Tensor,
options: argparse.Namespace,
net: nn.Module,
max_iters: int
):
if options.time:
timers = Timers()
timers.tic("solver_timer")
pre_compute_st = time.time()
solver_time = 0.
if options.init_weight:
net.apply(init_weights)
for param in net.parameters():
param.requires_grad = True
params = net.parameters()
optimizer = torch.optim.Adam(params, lr=options.lr, weight_decay=0)
total_losses = []
total_acc_strit = []
total_iter_time = []
if options.earlystopping:
early_stopping = EarlyStopping(patience=options.early_patience, min_delta=options.early_min_delta)
dt_start_time = time.time()
pc1_min = torch.min(pc1.squeeze(0), 0)[0]
pc2_min = torch.min(pc2.squeeze(0), 0)[0]
pc1_max = torch.max(pc1.squeeze(0), 0)[0]
pc2_max = torch.max(pc2.squeeze(0), 0)[0]
xmin_int, ymin_int, zmin_int = torch.floor(torch.where(pc1_min<pc2_min, pc1_min, pc2_min) * options.grid_factor-1) / options.grid_factor
xmax_int, ymax_int, zmax_int = torch.ceil(torch.where(pc1_max>pc2_max, pc1_max, pc2_max)* options.grid_factor+1) / options.grid_factor
print('xmin: {}, xmax: {}, ymin: {}, ymax: {}, zmin: {}, zmax: {}'.format(xmin_int, xmax_int, ymin_int, ymax_int, zmin_int, zmax_int))
# NOTE: build DT map
dt = DT(pc2.clone().squeeze(0).to(options.device), (xmin_int, ymin_int, zmin_int), (xmax_int, ymax_int, zmax_int), options.grid_factor, options.device)
dt_time = time.time() - dt_start_time
pc1 = pc1.to(options.device).contiguous()
pc2 = pc2.to(options.device).contiguous()
flow = flow.to(options.device).contiguous()
print(pc1.shape, pc2.shape, flow.shape)
pre_compute_time = time.time() - pre_compute_st
solver_time = solver_time + pre_compute_time
# ANCHOR: initialize best metrics
best_loss = 1e10
best_flow = None
best_epe3d = 1.
best_acc3d_strict = 0.
best_acc3d_relax = 0.
best_angle_error = 1.
best_outliers = 1.
best_epoch = 0
net_time = 0.
net_backward_time = 0.
dt_query_time = 0.
for epoch in range(max_iters):
iter_time_init = time.time()
optimizer.zero_grad()
net_time_st = time.time()
flow_pred = net(pc1)
net_time = net_time + time.time() - net_time_st
pc1_deformed = pc1 + flow_pred
dt_query_st = time.time()
loss = dt.torch_bilinear_distance(pc1_deformed.squeeze(0)).mean()
dt_query_time = dt_query_time + time.time() - dt_query_st
net_backward_st = time.time()
loss.backward()
optimizer.step()
net_backward_time = net_backward_time + time.time() - net_backward_st
if options.earlystopping:
if early_stopping.step(loss):
break
iter_time = time.time() - iter_time_init
solver_time = solver_time + iter_time
flow_pred_final = pc1_deformed - pc1
flow_metrics = flow.clone()
epe3d, acc3d_strict, acc3d_relax, outlier, angle_error = scene_flow_metrics(flow_pred_final, flow_metrics)
# ANCHOR: get best metrics
if loss <= best_loss:
best_loss = loss.item()
best_flow = flow_pred_final
best_epe3d = epe3d
best_acc3d_strict = acc3d_strict
best_acc3d_relax = acc3d_relax
best_angle_error = angle_error
best_outliers = outlier
best_epoch = epoch
total_losses.append(loss.item())
total_acc_strit.append(acc3d_strict)
total_iter_time.append(time.time()-iter_time_init)
if epoch % 50 == 0:
logging.info(f"[Ep {epoch}] [Loss: {loss.item():.5f}] "
f" Metrics: flow 1 --> flow 2"
f" [EPE: {epe3d:.3f}] [Acc strict: {acc3d_strict * 100:.3f}%]"
f" [Acc relax: {acc3d_relax * 100:.3f}%] [Angle error (rad): {angle_error:.3f}]"
f" [Outl.: {outlier * 100:.3f}%]")
if options.time:
timers.toc("solver_timer")
time_avg = timers.get_avg("solver_timer")
logging.info(timers.print())
# ANCHOR: get the best metrics
info_dict = {
'final_flow': best_flow,
'loss': best_loss,
'EPE3D': best_epe3d,
'acc3d_strict': best_acc3d_strict,
'acc3d_relax': best_acc3d_relax,
'angle_error': best_angle_error,
'outlier': best_outliers,
'time': time_avg,
'epoch': best_epoch,
'solver_time': solver_time,
'pre_compute_time': pre_compute_time,
}
info_dict['build_dt_time'] = dt_time
info_dict['dt_query_time'] = dt_query_time
info_dict['avg_dt_query_time'] = dt_query_time / epoch
info_dict['network_time'] = net_time
info_dict['avg_net_time'] = net_time / epoch
info_dict['net_backward_time'] = net_backward_time
info_dict['avg_net_backward_time'] = net_backward_time / epoch
# NOTE: visualization
if options.visualize:
fig = plt.figure(figsize=(13, 5))
ax = fig.gca()
ax.plot(total_losses, label="loss")
ax.legend(fontsize="14")
ax.set_xlabel("Iteration", fontsize="14")
ax.set_ylabel("Loss", fontsize="14")
ax.set_title("Loss vs iterations", fontsize="14")
plt.show()
# ANCHOR: new plot style
# NOTE: GT flow
pc1_o3d_gt = o3d.geometry.PointCloud()
colors_flow = flow_to_rgb(flow[0].cpu().numpy().copy())
pc1_o3d_gt.points = o3d.utility.Vector3dVector(pc1[0].cpu().numpy().copy())
pc1_o3d_gt.colors = o3d.utility.Vector3dVector(colors_flow / 255.0)
custom_draw_geometry_with_key_callback([pc1_o3d_gt]) # Press 'k' to see with dark background.
# NOTE: predicted flow
pc1_o3d_pred = o3d.geometry.PointCloud()
colors_flow = flow_to_rgb(info_dict['final_flow'][0].detach().cpu().numpy().copy())
pc1_o3d_pred.points = o3d.utility.Vector3dVector(pc1[0].cpu().numpy().copy())
pc1_o3d_pred.colors = o3d.utility.Vector3dVector(colors_flow / 255.0)
custom_draw_geometry_with_key_callback([pc1_o3d_pred]) # Press 'k' to see with dark background.
return info_dict
def optimize_neural_prior(options, data_loader):
if options.time:
timers = Timers()
timers.tic("total_time")
outputs = []
if options.model == 'neural_prior':
net = Neural_Prior(filter_size=options.hidden_units, act_fn=options.act_fn, layer_size=options.layer_size).to(options.device)
else:
raise Exception("Model not available.")
for i in range(len(data_loader)):
fi_name = data_loader[i]
with open(fi_name, 'rb') as fp:
data = np.load(fp)
pc1 = torch.from_numpy(data['pc1']).unsqueeze(0)
pc2 = torch.from_numpy(data['pc2']).unsqueeze(0)
flow = torch.from_numpy(data['flow']).unsqueeze(0)
fp.close()
if not options.use_all_points:
sample_idx = torch.randperm(min(pc1.shape[1], pc2.shape[1]))[:options.num_points]
pc1 = pc1[:, sample_idx]
pc2 = pc2[:, sample_idx]
flow = flow[:, sample_idx]
logging.info(f"# {i} Working on sample: {fi_name}...")
info_dict = solver(pc1, pc2, flow, options, net, options.iters)
# Collect results.
outputs.append(dict(list(info_dict.items())[1:]))
print(dict(list(info_dict.items())[1:]))
if options.time:
timers.toc("total_time")
logging.info(timers.print())
df = pd.DataFrame(outputs)
df.loc['mean'] = df.mean()
logging.info(df.mean())
logging.info("Finish optimization!")
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fast Neural Scene Flow.")
# ANCHOR: general configuration
parser.add_argument('--exp_name', type=str, default='fast_neural_scene_flow_mlp_dt', metavar='N', help='Name of the experiment.')
parser.add_argument('--num_points', type=int, default=2048, help='Point number [default: 2048].')
parser.add_argument('--batch_size', type=int, default=1, metavar='batch_size', help='Batch size.')
parser.add_argument('--iters', type=int, default=5000, metavar='N', help='Number of iterations to optimize the model.')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='Learning rate.')
parser.add_argument('--device', default='cuda:0', type=str, help='device: cpu? cuda?')
parser.add_argument('--seed', type=int, default=1234, metavar='S', help='Random seed (default: 1234).')
parser.add_argument('--dataset', type=str, default='ArgoverseSceneFlowDataset',
choices=['ArgoverseSceneFlowDataset', 'WaymoOpenSceneFlowDataset'], metavar='N', help='Dataset to use.')
parser.add_argument('--dataset_path', type=str, default='./dataset/argoverse', metavar='N', help='Dataset path.')
parser.add_argument('--visualize', action='store_true', default=False, help='Show visuals.')
parser.add_argument('--time', dest='time', action='store_true', default=True, help='Count the execution time of each step.')
parser.add_argument('--use_all_points', action='store_true', default=False, help='use all the points or not.')
parser.add_argument('--early_patience', type=int, default=100, help='patience in early stopping.')
parser.add_argument('--early_min_delta', type=float, default=0.0001, help='the minimum delta of early stopping.')
parser.add_argument('--init_weight', action='store_true', default=False, help='whether initialize weights on each scenes or not.')
parser.add_argument('--earlystopping', action='store_true', default=False, help='whether to use early stopping or not.')
# ANCHOR: for neural prior
parser.add_argument('--model', type=str, default='neural_prior', choices=['neural_prior', 'linear_model', 'kronecker_model'], metavar='N', help='Model to use.')
parser.add_argument('--hidden_units', type=int, default=128, metavar='N', help='Number of hidden units in neural prior')
parser.add_argument('--layer_size', type=int, default=8, help='how many hidden layers in the model.')
parser.add_argument('--act_fn', type=str, default='relu', metavar='AF', help='activation function for neural prior.')
# ANCHOR: for distance transform
parser.add_argument('--grid_factor', type=float, default=10., help='grid cell size=1/grid_factor.')
options = parser.parse_args()
exp_dir_path = f"checkpoints/{options.exp_name}"
if not os.path.exists(exp_dir_path):
os.makedirs(exp_dir_path)
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s [%(levelname)s] - %(message)s',
handlers=[logging.FileHandler(filename=f"{exp_dir_path}/run.log"), logging.StreamHandler()])
logging.info(options)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.info('---------------------------------------')
print_options = vars(options)
for key in print_options.keys():
logging.info(key+': '+str(print_options[key]))
logging.info('---------------------------------------')
torch.backends.cudnn.deterministic = True
torch.manual_seed(options.seed)
if 'cuda' in options.device:
torch.cuda.manual_seed_all(options.seed)
np.random.seed(options.seed)
if options.dataset == "ArgoverseSceneFlowDataset":
data_loader = sorted(glob.glob(f"{options.dataset_path}/val/*/*.npz"))
elif options.dataset == 'WaymoOpenSceneFlowDataset':
data_loader = sorted(glob.glob(f"{options.dataset_path}/*/*.npz"))
optimize_neural_prior(options, data_loader)