-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
72 lines (58 loc) · 2.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import logging
import os
import sys
from pprint import pprint
import torch
from torch import nn
from torch.backends import cudnn
import network
from core.config import opt, update_config
from core.loader import get_data_provider
from core.solver import Solver
from utils.lr_scheduler import LRScheduler
FORMAT = '[%(levelname)s]: %(message)s'
logging.basicConfig(
level=logging.INFO,
format=FORMAT,
stream=sys.stdout
)
def train(args):
logging.info('======= user config ======')
logging.info(pprint(opt))
logging.info(pprint(args))
logging.info('======= end ======')
train_data, valid_data = get_data_provider(opt)
net = getattr(network, opt.network.name)(classes=opt.dataset.num_classes)
optimizer = getattr(torch.optim, opt.train.optimizer)(net.parameters(), lr=opt.train.lr,
weight_decay=opt.train.wd, momentum=opt.train.momentum)
ce_loss = nn.CrossEntropyLoss()
lr_scheduler = LRScheduler(base_lr=opt.train.lr, step=opt.train.step, factor=opt.train.factor,
warmup_epoch=opt.train.warmup_epoch, warmup_begin_lr=opt.train.warmup_begin_lr)
net = nn.DataParallel(net)
net = net.cuda()
mod = Solver(opt, net)
mod.fit(train_data=train_data, test_data=valid_data, optimizer=optimizer, criterion=ce_loss,
lr_scheduler=lr_scheduler)
def main():
parser = argparse.ArgumentParser(description='model training')
parser.add_argument('--config_file', type=str, default=None, help='optional config file for training')
parser.add_argument('--save_dir', type=str, default='checkpoints', help='save model directory')
args = parser.parse_args()
if args.config_file is not None:
update_config(args.config_file)
opt.misc.save_dir = args.save_dir
os.environ['CUDA_VISIBLE_DEVICES'] = opt.train.gpus
cudnn.benchmark = True
train(args)
if __name__ == '__main__':
main()