-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path# model.py.txt
83 lines (64 loc) · 2.34 KB
/
# model.py.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# model.py
class Model:
def __init__(self):
# Initialize the model and any required components
pass
def train(self, train_data):
# Train the model using the provided training data
# Implement model training functionality here
pass
def predict(self, input_data):
# Make predictions using the trained model
# Implement model prediction functionality here
pass
def evaluate(self, eval_data):
# Evaluate the model's performance on the provided evaluation data
# Implement model evaluation functionality here
pass
# run.py
from model import Model
class TaskRunner:
def __init__(self, model):
self.model = model
def load_dataset(self, dataset_name):
# Load the CodeXGLUE dataset into memory
# Implement dataset loading functionality here
pass
def preprocess(self):
# Preprocess and clean the loaded dataset
# Implement data preprocessing functionality here
pass
def eval(self, task_name, output_path):
# Evaluate the model's performance on a specific task
# Implement model evaluation functionality here
pass
def baseline(self, task_name):
# Compare the model's performance against the baseline model
# Implement baseline comparison functionality here
pass
def train_model(self, train_data):
# Train the model using the provided training data
self.model.train(train_data)
def predict_model(self, input_data):
# Make predictions using the trained model
return self.model.predict(input_data)
def evaluate_model(self, eval_data):
# Evaluate the model's performance on the provided evaluation data
return self.model.evaluate(eval_data)
def run(self, task_name):
# Run a specific task on the model
self.load_dataset(task_name)
self.preprocess()
self.evaluate_model(task_name)
self.baseline(task_name)
# Implement additional task-specific functionality here
model = Model()
task_runner = TaskRunner(model)
# Example usage
train_data = ...
input_data = ...
eval_data = ...
task_runner.train_model(train_data)
predictions = task_runner.predict_model(input_data)
evaluation_result = task_runner.evaluate_model(eval_data)
task_runner.run('task_name')