-
Notifications
You must be signed in to change notification settings - Fork 9
/
_ET_pp_wReplay_main_cswinT.py
69 lines (55 loc) · 2.16 KB
/
_ET_pp_wReplay_main_cswinT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import argparse
parser = argparse.ArgumentParser(description='EfficientTrain')
parser.add_argument('--tag', default='', type=str)
parser.add_argument('--seed', default='', type=str)
parser.add_argument('--epoch', default=200, type=int)
args = parser.parse_args()
res_list = [96,] * 2 + [160,] * 4 + [224,] * 4
print('res_list:', res_list)
bs_list = [512,] * 2 + [512,] * 4 + [256,] * 4
up_freq_list = [1,] * 2 + [1,] * 4 + [2,] * 4
print('bs_list:', bs_list)
print('up_freq_list:', up_freq_list)
replay_times_list = [2,] * 2 + [1,] * 4 + [1,] * 4
replay_buffer_size_list = [1024,] * 2 + [0,] * 4 + [0,] * 4
print('replay_times_list:', replay_times_list)
print('replay_buffer_size_list:', replay_buffer_size_list)
epoch_scale_ratio = {
64: (224 * 224) / (64 * 64),
96: (224 * 224) / (96 * 96),
128: (224 * 224) / (128 * 128),
160: (224 * 224) / (160 * 160),
192: (224 * 224) / (192 * 192),
224: 1,
}
for ET_index in range(10):
tag = args.tag
print()
print('save at: ', tag)
print()
rp_epoch = int(
args.epoch * epoch_scale_ratio[res_list[ET_index]] / replay_times_list[ET_index]
)
rp_warmup_epoch = int(
20 / replay_times_list[ET_index]
)
command = f" \
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m torch.distributed.launch --use-env --nproc_per_node=8 --master_port=11333 main_buffer.py \
--data_path /home/data/imagenet/ --num_workers 10 \
--output_dir ./{tag} \
--epochs {rp_epoch} --end_epoch {int(rp_epoch / 10 * (ET_index + 1))} \
--warmup_epochs {rp_warmup_epoch} \
--aa rand-m{ET_index}-mstd0.5-inc1 \
--input_size {res_list[ET_index]} \
--model CSWin_64_12211_tiny_224 --drop_path {0.2 * args.epoch / 200} \
--use_amp true --model_ema true --model_ema_eval true \
--batch_size {int(bs_list[ET_index] / replay_times_list[ET_index])} --lr 4e-3 --update_freq {up_freq_list[ET_index]} \
--replay_times {replay_times_list[ET_index]} --replay_buffer_size {replay_buffer_size_list[ET_index]} \
--seed {args.seed} \
"
print()
print(command)
print()
os.system(command)