-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathoptimizer.py
100 lines (84 loc) · 3.18 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
# Vision Transformer with Deformable Attention
# Modified by Zhuofan Xia
# --------------------------------------------------------
import torch.optim as optim
def build_optimizer(config, model):
"""
Build optimizer, set weight decay of normalization to 0 by default.
"""
skip = {}
skip_keywords = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
if hasattr(model, 'no_weight_decay_keywords'):
skip_keywords = model.no_weight_decay_keywords()
if hasattr(model, 'lower_lr_kvs'):
lower_lr_kvs = model.lower_lr_kvs
else:
lower_lr_kvs = {}
parameters = set_weight_decay_and_lr(
model, skip, skip_keywords, lower_lr_kvs, config.TRAIN.BASE_LR)
opt_lower = config.TRAIN.OPTIMIZER.NAME.lower()
optimizer = None
if opt_lower == 'sgd':
optimizer = optim.SGD(parameters, momentum=config.TRAIN.OPTIMIZER.MOMENTUM, nesterov=True,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
return optimizer
def set_weight_decay_and_lr(
model,
skip_list=(), skip_keywords=(),
lower_lr_kvs={}, base_lr=5e-4):
# breakpoint()
assert len(lower_lr_kvs) == 1 or len(lower_lr_kvs) == 0
has_lower_lr = len(lower_lr_kvs) == 1
if has_lower_lr:
for k,v in lower_lr_kvs.items():
lower_lr_key = k
lower_lr = v * base_lr
has_decay = []
has_decay_low = []
no_decay = []
no_decay_low = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
check_keywords_in_name(name, skip_keywords):
if has_lower_lr and check_keywords_in_name(name, (lower_lr_key,)):
no_decay_low.append(param)
else:
no_decay.append(param)
else:
if has_lower_lr and check_keywords_in_name(name, (lower_lr_key,)):
has_decay_low.append(param)
else:
has_decay.append(param)
if has_lower_lr:
result = [
{'params': has_decay},
{'params': has_decay_low, 'lr': lower_lr},
{'params': no_decay, 'weight_decay': 0.},
{'params': no_decay_low, 'weight_decay': 0., 'lr': lower_lr}
]
else:
result = [
{'params': has_decay},
{'params': no_decay, 'weight_decay': 0.}
]
# breakpoint()
return result
def check_keywords_in_name(name, keywords=()):
isin = False
for keyword in keywords:
if keyword in name:
isin = True
return isin