-
Notifications
You must be signed in to change notification settings - Fork 2
/
cmrcn_tiny_1x_4n_dp00_lr4.py
110 lines (104 loc) · 3.89 KB
/
cmrcn_tiny_1x_4n_dp00_lr4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
_base_ = [
'../_base_/models/cascade_mask_rcnn_dat_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
pretrained = '<path-to-pretrained-model>'
model = dict(
backbone=dict(
type='DAT',
dim_stem=64,
dims=[64, 128, 256, 512],
depths=[2, 4, 18, 2],
stage_spec=[
["N", "D"],
["N", "D", "N", "D"],
["N", "D", "N", "D", "N", "D", "N", "D", "N", "D", "N", "D", "N", "D", "N", "D", "N", "D"],
["D", "D"]],
heads=[2, 4, 8, 16],
groups=[1, 2, 4, 8],
use_pes=[True, True, True, True],
strides=[8, 4, 2, 1],
offset_range_factor=[-1, -1, -1, -1],
use_dwc_mlps=[True, True, True, True],
use_lpus=[True, True, True, True],
use_conv_patches=True,
ksizes=[9, 7, 5, 3],
nat_ksizes=[7, 7, 7, 7],
drop_path_rate=0.0,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)
),
neck=dict(in_channels=[64, 128, 256, 512])
)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# augmentation strategy originates from DETR / Sparse RCNN
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AutoAugment',
policies=[
[
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
multiscale_mode='value',
keep_ratio=True)
],
[
dict(type='Resize',
img_scale=[(400, 1333), (500, 1333), (600, 1333)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomCrop',
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
multiscale_mode='value',
override=True,
keep_ratio=True)
]
]),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
lr = 4e-4
bsz_per_gpu = 2
n_workers = 2
data = dict(train=dict(pipeline=train_pipeline), samples_per_gpu=bsz_per_gpu, workers_per_gpu=n_workers)
optimizer = dict(_delete_=True, type='AdamW', lr=lr, betas=(0.9, 0.999), weight_decay=0.05,
paramwise_cfg=dict(norm_decay_mult=0.,
custom_keys={'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'rpe_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}
)
)
fp16 = None
optimizer_config = dict(
grad_clip=None,
type='Fp16OptimizerHook',
coalesce=True,
bucket_size_mb=-1,
loss_scale='dynamic',
distributed=True
)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
runner = dict(type='EpochBasedRunnerHF', max_epochs=12)
log_config = dict(interval=50)