-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
632 lines (562 loc) · 29.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import argparse
import math
import os
import sys
from datetime import datetime
from functools import partial
from pathlib import Path
import accelerate
import einops
import numpy as np
import torch
from einops import rearrange
from loguru import logger
from omegaconf import OmegaConf
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
import taming.models.vqgan
import utils_uvit
from PPO import PPO
from libs.discriminator import ProjectedDiscriminator
from torch_fidelity import FeatureExtractorInceptionV3
from tsvdataset import CC3MTSV
from torchvision import datasets
from utils_uvit import auto_load_model, calc_fid
class BiasAct:
def __init__(self):
ratio = (torch.arange(args.gen_steps) + 1 - 1e-3) / args.gen_steps
mask_ratio = torch.cos(ratio * math.pi * 0.5)
self.manual_gen_ratios = torch.log(mask_ratio / (1 - mask_ratio)).to(device)
def inverse_softplus(x):
return x + torch.log(-torch.exp(-x) + 1)
self.manual_temp = inverse_softplus(1 - ratio).to(device)
self.manual_samp_temp = inverse_softplus(torch.ones((args.gen_steps,), dtype=torch.float32)).to(device)
self.manual_cfg = inverse_softplus((torch.arange(args.gen_steps) + 1e-3) / args.gen_steps).to(device)
self.activations = {'manual_gen_ratios': nn.Sigmoid(), 'manual_temp': nn.Softplus(),
'manual_samp_temp': nn.Softplus(), 'manual_cfg': nn.Softplus()}
def __call__(self, actions, timestep=None):
if timestep is not None:
residuals = {k: getattr(self, k)[timestep] for k in args.upd_set}
else:
residuals = {k: einops.repeat(getattr(self, k), 'T -> B T', B=actions.shape[0]) for k in args.upd_set}
if args.heu:
actdict = {k: actions[:, idx] + residuals[k] for idx, k in enumerate(args.upd_set)}
else:
actdict = {k: actions[:, idx] for idx, k in enumerate(args.upd_set)}
actdict = {k: self.activations[k](v) for k, v in actdict.items()}
return actdict
def action2dict(action, timestep=None):
B = action.shape[0]
action = action.reshape(B, -1)
assert action.shape[1] == len(args.upd_set), 'action shape: {}, upd_set: {}'.format(action.shape, args.upd_set)
actdict = bias_act(action, timestep=timestep)
return actdict
def get_args():
parser = argparse.ArgumentParser()
# Basics
parser.add_argument('--has_continuous_action_space', type=bool, default=True)
parser.add_argument('--max_training_timesteps', type=int, default=100000000)
parser.add_argument('--save_model_freq', type=int, default=1)
parser.add_argument('--eval_freq', type=int, default=1)
parser.add_argument('--state_opt', type=str, nargs='+', default=['timestep', 'feat'])
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--upd_set', type=str, nargs='+', default=['manual_gen_ratios', 'manual_temp',
'manual_samp_temp', 'manual_cfg'])
parser.add_argument('--data_root', type=str)
parser.add_argument('--dset', type=str, default='in256', choices=['in256', 'cc3m'])
parser.add_argument('--eval_paths', type=str, nargs='+')
parser.add_argument('--resume', type=str)
# PPO hyperparameters
parser.add_argument('--K_epochs', type=int, default=5)
parser.add_argument('--D_epochs', type=int, default=5)
parser.add_argument('--eps_clip', type=float, default=0.2)
parser.add_argument('--gamma', type=float, default=1)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--d_lr', type=float, default=0.0001)
parser.add_argument('--trajectories_per_upd', type=int, default=4096)
parser.add_argument('--action_std', type=float, nargs='+', default=[0.6])
parser.add_argument('--decay_steps', type=int, nargs='+', default=[500])
parser.add_argument('--decay_rate', type=float, default=0.3)
parser.add_argument('--min_action_std', type=float, default=0.1)
# NAT config
parser.add_argument('--config', type=str)
parser.add_argument('--state_dict_path', type=str, default=None)
# NAT generation config
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--reference_image_path', type=str,
default='assets/fid_stats/fid_stats_imagenet256_guided_diffusion.npz')
parser.add_argument('--n_samples', type=int, default=50000)
parser.add_argument('--gen_steps', type=int, default=8)
parser.add_argument('--heu', type=int, default=0,
help='Optionally use manual scheduling rules of existing works as residual for better performance')
# Discriminator config
parser.add_argument('--d_loss', type=str, default='bce')
parser.add_argument('--data_transform', type=int, default=1)
parser.add_argument('--c_dim', type=int, default=512)
parser.add_argument('--output_dir', type=str)
if os.getenv('DEBUG', 'f') == 't':
args = parser.parse_known_args()[0]
else:
args = parser.parse_args()
return args
class MuseGenerator:
def __init__(self):
self.seq_len = 256
self.mask_ind = 1024
self.nnet = self.prepare_nnet()
self.gumbel_dist = torch.distributions.gumbel.Gumbel(torch.tensor([0.0], device=device),
torch.tensor([1.0], device=device))
self.context_generator = self.prepare_context_generator()
def prepare_context_generator(self):
if args.dset == 'in256':
while True:
yield torch.randint(0, 1000, (args.batch_size, 1), device=device)
elif args.dset == 'cc3m':
dataset = CC3MTSV(args.data_root, 'train', transform=partial(utils_uvit.adm_transform), txt_only=True)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
dataloader = accelerator.prepare(dataloader)
logger.info('train dataloader length: {}'.format(len(dataloader)))
while True:
for data in dataloader:
real_ids = tokenizer(data, max_length=77, padding='max_length', truncation=True,
return_tensors='pt').input_ids
real_txt_features = txt_encoder(input_ids=real_ids.to(device))
yield real_txt_features
else:
raise NotImplementedError
def reset(self, contexts=None):
contexts = next(self.context_generator) if contexts is None else contexts
if isinstance(contexts, CLIPTextModelOutput):
B = contexts.text_embeds.shape[0]
else:
B = len(contexts)
masked_ids = torch.full((B, self.seq_len), self.mask_ind, dtype=torch.long, device=device)
self.state = self.nnet(masked_ids, context=contexts, return_dict=True)
self.state['masked_ids'] = masked_ids
self.state['timestep'] = torch.zeros((B,), dtype=torch.long, device=device)
self.state['contexts'] = contexts
return self.state
def prepare_nnet(self):
self.config = OmegaConf.load(args.config)
self.nnet = utils_uvit.get_nnet(**self.config.nnet)
self.nnet = accelerator.prepare(self.nnet)
ckpt = torch.load(args.state_dict_path, map_location='cpu')
ckpt = {k: v for k, v in ckpt.items() if 'position_ids' not in k} # add handling for cc3m ckpt
self.nnet.module.load_state_dict(ckpt)
self.nnet.eval()
self.nnet.requires_grad_(False)
return self.nnet
def add_gumbel_noise(self, t, temperature):
gumbel_sample = self.gumbel_dist.sample(t.shape).squeeze()
result = t + temperature.unsqueeze(1) * gumbel_sample
return result
def step(self, manual_gen_ratios, manual_temp, manual_samp_temp, manual_cfg):
logits = self.state['logits']
_empty_ctx = einops.repeat(empty_ctx, '... -> B ...', B=len(manual_gen_ratios))
logits_wo_cfg = self.nnet(self.state['masked_ids'], context=_empty_ctx)
logits = logits + manual_cfg.unsqueeze(1).unsqueeze(1) * (logits - logits_wo_cfg)
# sampling & scoring
is_mask = (self.state['masked_ids'] == self.mask_ind)
sampled_ids = torch.distributions.Categorical(
logits=logits / manual_samp_temp.unsqueeze(1).unsqueeze(2)).sample()
logits = torch.log_softmax(logits, dim=-1)
sampled_logits = torch.squeeze(
torch.gather(logits, dim=-1, index=torch.unsqueeze(sampled_ids, -1)), -1)
sampled_ids = torch.where(is_mask, sampled_ids, self.state['masked_ids'])
sampled_logits = torch.where(is_mask, sampled_logits, +np.inf).float()
# masking
mask_len = torch.floor(self.seq_len * manual_gen_ratios).clamp(max=self.seq_len-1)
confidence = self.add_gumbel_noise(sampled_logits, manual_temp)
sorted_confidence, _ = torch.sort(confidence, axis=-1)
cut_off = torch.gather(sorted_confidence, 1, mask_len.long().unsqueeze(1))
masking = (confidence < cut_off)
masked_ids = torch.where(masking, self.mask_ind, sampled_ids)
# update state
self.state.update(self.nnet(masked_ids, context=self.state['contexts'], return_dict=True))
self.state['masked_ids'] = masked_ids
self.state['sampled_ids'] = sampled_ids
self.state['timestep'] = self.state['timestep'] + 1
return self.state
class FIDCalculator:
def __init__(self, ref_stats_path, n_samples, gather=True):
feature_extractor = FeatureExtractorInceptionV3(
name='inception-v3',
features_list=['2048', 'logits_unbiased'],
feature_extractor_internal_dtype='float32',
feature_extractor_weights_path='assets/pt_inception-2015-12-05-6726825d.pth'
).to(device)
self.inception = feature_extractor
self.n_samples = n_samples
self.gather = gather
with np.load(ref_stats_path) as f:
self.ref_stats = (f['mu'][:], f['sigma'][:])
self.ref_stats = [torch.from_numpy(x).to(device) for x in self.ref_stats]
batch_size = args.batch_size * accelerator.num_processes if gather else args.batch_size
self.total_iters = len(utils_uvit.amortize(self.n_samples, batch_size))
self.has_init = False
def init(self):
self.pred_tensor = torch.empty((self.n_samples * 2, 2048), device=device)
self.logits_tensor = torch.empty((self.n_samples * 2, 1008), device=device)
self.idx = 0
self.pbar = tqdm(total=self.total_iters, desc='FID', leave=True)
self.has_init = True
def get_metrics(self):
pred_tensor = self.collate_tensor(self.pred_tensor)
fid = calc_fid(pred_tensor, *self.ref_stats)
logger.info('FID: {}'.format(fid))
logits_tensor = self.collate_tensor(self.logits_tensor)
isc = utils_uvit.isc_features_to_metric(logits_tensor)
logger.info('ISC: {}'.format(isc))
self.has_init = False
return {f'fid_{self.n_samples}': fid, f'isc_{self.n_samples}': isc}
def collate_tensor(self, tensor):
tensor = tensor[:self.idx]
if self.gather:
tensor = accelerator.gather(tensor)
assert self.n_samples <= tensor.shape[0]
logger.info('Truncating tensor from {} to {} samples'.format(tensor.shape[0], self.n_samples))
tensor = tensor[:self.n_samples]
return tensor
def add(self, samples):
if not self.has_init:
self.init()
samples = samples.clamp_(0., 1.)
features_2048, logits_unbiased = self.inception(samples.float())
self.pred_tensor[self.idx:self.idx + features_2048.shape[0]] = features_2048
self.logits_tensor[self.idx:self.idx + logits_unbiased.shape[0]] = logits_unbiased
self.idx = self.idx + features_2048.shape[0]
self.pbar.update(1)
if self.pbar.n == self.total_iters:
return self.get_metrics()
class DiscriminatorEnv:
def __init__(self):
super(DiscriminatorEnv, self).__init__()
self.real_data_generator = self.real_imgs_generator()
self.discriminator = self.prepare_discriminator()
self.autoencoder = taming.models.vqgan.get_model().to(device)
self.optimizer = torch.optim.Adam(self.discriminator.parameters(), lr=args.d_lr, betas=(0.5, 0.999))
self.discriminator, self.optimizer = accelerator.prepare(self.discriminator, self.optimizer)
def real_imgs_generator(self):
if args.dset == 'in256':
real_data = datasets.ImageFolder(args.data_root, transform=utils_uvit.adm_transform)
dataloader = DataLoader(real_data, batch_size=args.batch_size, shuffle=True, num_workers=4,
pin_memory=True, persistent_workers=True)
dataloader = accelerator.prepare(dataloader)
while True:
for data in dataloader:
real_samples, real_labels = data
real_labels = real_labels.unsqueeze(1).to(device)
real_samples = real_samples.to(device)
yield real_samples, real_labels
elif args.dset == 'cc3m':
dataset = CC3MTSV(args.data_root, 'train', transform=partial(utils_uvit.adm_transform), txt_only=False)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
dataloader = accelerator.prepare(dataloader)
while True:
for data in dataloader:
real_samples, real_txts = data
real_ids = tokenizer(real_txts, max_length=77, padding='max_length', truncation=True,
return_tensors='pt').input_ids
real_txt_features = txt_encoder(input_ids=real_ids.to(device))
real_samples = real_samples.to(device)
yield real_samples, real_txt_features
else:
raise NotImplementedError
def prepare_discriminator(self):
discriminator = ProjectedDiscriminator(c_dim=args.c_dim, data_transform=args.data_transform,
cin=(args.dset == 'in256'))
logger.info('Discriminator has {} parameters'.format(sum(p.numel() for p in discriminator.parameters())))
return discriminator
@torch.no_grad()
def calc_reward(self, sampled_ids, contexts, done=False):
if done:
self.discriminator.eval()
decoded_samples = self.decode(sampled_ids)
reward = self.discriminator(decoded_samples, contexts) # Bx1
reward = reward.mean(dim=1, keepdim=True)
reward = torch.sigmoid(reward)
else:
reward = torch.zeros((len(sampled_ids),), dtype=torch.float32, device=device)
decoded_samples = None
return reward, decoded_samples
@torch.cuda.amp.autocast(enabled=True)
def decode(self, sampled_ids):
_z = rearrange(sampled_ids, 'b (i j) -> b i j', i=16, j=16)
res = self.autoencoder.decode_code(_z)
res = res.clamp_(0., 1.)
return res
def discriminator_forward(self, fake_samples, fake_labels):
metrics = {}
# prepare data
real_samples, real_labels = next(self.real_data_generator)
# forward
with torch.set_grad_enabled(True):
real_logits = self.discriminator(real_samples, real_labels)
fake_logits = self.discriminator(fake_samples, fake_labels)
if args.d_loss == 'bce':
loss = torch.nn.functional.softplus(-real_logits).mean() + \
torch.nn.functional.softplus(fake_logits).mean()
elif args.d_loss == 'hinge':
loss = nn.ReLU()(1 - real_logits).mean() + \
nn.ReLU()(1 + fake_logits).mean()
else:
raise NotImplementedError
# log
real_logits = accelerator.gather(real_logits)
fake_logits = accelerator.gather(fake_logits)
metrics['d_loss'] = accelerator.gather(loss.detach()).mean().item()
metrics['d_acc'] = ((real_logits > 0).float().mean() + (fake_logits < 0).float().mean()) / 2
metrics['real_scores'] = real_logits.mean().item()
metrics['fake_scores'] = fake_logits.mean().item()
metrics['real_signs'] = real_logits.sign().mean().item()
metrics['fake_signs'] = fake_logits.sign().mean().item()
return loss, metrics
def update_discriminator(self, fake_samples, fake_labels):
self.discriminator.train()
self.optimizer.zero_grad()
loss, metrics = self.discriminator_forward(fake_samples, fake_labels)
accelerator.backward(loss.mean())
self.optimizer.step()
return metrics
################################### Training ###################################
@logger.catch(reraise=(os.getenv('DEBUG', 'f') == 't'))
def train():
accelerate.utils.set_seed(args.seed, device_specific=True)
logger.info(f'Process {accelerator.process_index} using device: {device}')
accelerator.wait_for_everyone()
if accelerator.is_main_process:
logger.remove()
logger.add(sys.stdout, level='INFO')
logger.add(os.path.join(args.output_dir, 'output.log'), level='INFO')
else:
logger.remove()
logger.add(sys.stdout, filter=lambda record: record["level"].name == "TRACE", level="TRACE")
logger.info(f'Run on {accelerator.num_processes} devices')
env = MuseGenerator()
disc = DiscriminatorEnv()
args.ckpt_dir = os.path.join(args.output_dir, 'ckpts')
os.makedirs(args.ckpt_dir, exist_ok=True)
action_dim = len(args.upd_set)
# prep action std
action_std = torch.tensor(args.action_std, dtype=torch.float32, device=accelerator.device)
if len(args.action_std) == 1:
action_std = action_std.repeat(action_dim)
else:
assert len(args.action_std) == len(args.upd_set)
assert len(action_std) == action_dim
# initialize a PPO agent
ppo_agent_wo_ddp = PPO(action_dim, args.lr, args.lr, args.gamma, args.K_epochs, args.eps_clip,
args.has_continuous_action_space, action_std_init=action_std,
device=accelerator.device,
state_opt=args.state_opt,
feat_dim=env.nnet.module.embed_dim, args=args)
optimizer = torch.optim.Adam(ppo_agent_wo_ddp.parameters(), lr=args.lr)
ppo_agent, optimizer = accelerator.prepare(ppo_agent_wo_ddp, optimizer)
# track total training time
start_time = datetime.now().replace(microsecond=0)
print("Started training at (GMT) : ", start_time)
print("============================================================================================")
counters = {
'global_step': 0, # collect trajectories & update PPO agent
'num_trajectories': 0,
'num_agent_updates': 0,
'num_discriminator_updates': 0,
}
if args.eval_paths:
for eval_path in args.eval_paths:
args.resume = eval_path
auto_load_model(args, ppo_agent_wo_ddp, optimizer, disc.discriminator, disc.optimizer, accelerator.scaler,
counters=counters)
evaluate(counters, env, disc, ppo_agent_wo_ddp)
return
else:
auto_load_model(args, ppo_agent_wo_ddp, optimizer, disc.discriminator, disc.optimizer, accelerator.scaler,
counters=counters)
best_fid = 1e9
# training loop
while counters['global_step'] < args.max_training_timesteps:
# collect trajectories
for _ in range(0, args.trajectories_per_upd, args.batch_size * accelerator.num_processes):
env.reset()
while True:
action = ppo_agent(state=env.state, flag='select_action')
env.step(**action2dict(action, timestep=env.state['timestep']))
done = (env.state['timestep'][0].item() == args.gen_steps)
reward, _ = disc.calc_reward(env.state['sampled_ids'], env.state['contexts'], done=done)
ppo_agent(reward=reward, done=done, flag='store_transition')
if done:
break
counters['num_trajectories'] += args.batch_size * accelerator.num_processes
# update PPO agent
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(reversed(ppo_agent.module.buffer.rewards),
reversed(ppo_agent.module.buffer.is_terminals)):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (ppo_agent.module.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
ppo_agent.module.buffer.rewards = rewards
old_actions, old_states, old_logprobs, rewards, old_state_values = ppo_agent.module.buffer.to_tensor()
running_rewards = accelerator.gather(rewards)
rewards = (rewards - running_rewards.mean()) / (running_rewards.std() + 1e-7)
advantages = rewards.detach() - old_state_values.detach()
for _ in range(args.K_epochs):
loss = ppo_agent(old_states, old_actions, old_logprobs, rewards, advantages, args)
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
counters['num_agent_updates'] += args.K_epochs
ppo_agent.module.policy_old.load_state_dict(ppo_agent.module.policy.state_dict())
ppo_agent.module.buffer.clear()
# std decay
def calculate_action_std(global_step, decay_rate, decay_steps, initial_action_std, min_action_std):
assert isinstance(initial_action_std, list) and len(initial_action_std) == 1
initial_action_std = initial_action_std[0]
reductions = sum(global_step >= step for step in decay_steps)
current_action_std = max(initial_action_std - reductions * decay_rate, min_action_std)
return current_action_std
decayed_action_std = calculate_action_std(counters['global_step'], args.decay_rate, args.decay_steps, args.action_std, args.min_action_std)
decayed_action_std = torch.tensor([decayed_action_std], dtype=torch.float32, device=accelerator.device)
decayed_action_std = decayed_action_std.repeat(action_dim)
ppo_agent_wo_ddp.set_action_std(decayed_action_std)
if accelerator.is_main_process:
log_dict = dict(train_metrics={f'reward_mean': running_rewards.mean().item(),
f'reward_std': running_rewards.std().item()},
**counters,
action_std_mean=ppo_agent_wo_ddp.action_std.mean().item(),
lr=optimizer.param_groups[0]['lr'],
)
logger.info(log_dict)
# update discriminator
for i in range(args.D_epochs):
env.reset()
while True:
action = ppo_agent(state=env.state, flag='select_action', update_buffer=False)
env.step(**action2dict(action, timestep=env.state['timestep']))
done = (env.state['timestep'][0].item() == args.gen_steps)
if done:
break
fake_labels = env.state['contexts']
fake_samples = disc.decode(env.state['sampled_ids'])
d_metrics = disc.update_discriminator(fake_samples, fake_labels)
counters['num_discriminator_updates'] += 1
if accelerator.is_main_process:
log_dict = dict(train_metrics=d_metrics,
**counters,
)
logger.info(log_dict)
# validate
if (counters['global_step'] + 1) % args.eval_freq == 0:
fid = evaluate(counters, env, disc, ppo_agent_wo_ddp)
if fid < best_fid:
best_fid = fid
logger.info('Current Best FID: {}'.format(best_fid))
counters['global_step'] += 1
# save model weights
if (counters['global_step'] + 1) % args.save_model_freq == 0 and accelerator.is_main_process:
state_dict = {
'model': ppo_agent_wo_ddp.state_dict(),
'discriminator': disc.discriminator.state_dict(),
'd_optimizer': disc.optimizer.state_dict(),
'optimizer': optimizer.state_dict(),
'args': args,
**counters
}
if accelerator.scaler is not None:
state_dict['scaler'] = accelerator.scaler.state_dict()
torch.save(state_dict, os.path.join(args.ckpt_dir, f'ckpt_{counters["global_step"]}.pth'))
# print total training time
print("============================================================================================")
end_time = datetime.now().replace(microsecond=0)
print("Started training at (GMT) : ", start_time)
print("Finished training at (GMT) : ", end_time)
print("Total training time : ", end_time - start_time)
print("============================================================================================")
def evaluate(counters, env, disc, ppo_agent_wo_ddp):
fid_calculator = FIDCalculator(ref_stats_path=args.reference_image_path,
n_samples=args.n_samples, gather=True)
test_rewards = []
test_actions = []
while True:
if args.dset == 'cc3m':
contexts, _ = next(test_txt_generator)
else:
contexts, _ = None, None
env.reset(contexts=contexts)
while True: # collect trajectory
test_action = ppo_agent_wo_ddp.policy_old.actor(env.state)
env.step(**action2dict(test_action, timestep=env.state['timestep']))
test_done = (env.state['timestep'][0].item() == args.gen_steps)
test_reward, decoded_samples = disc.calc_reward(env.state['sampled_ids'],
env.state['contexts'], done=test_done)
test_actions.append(test_action)
if test_done:
break
res = fid_calculator.add(decoded_samples)
test_rewards.append(test_reward)
if res is not None:
break
# calc test actions
test_rewards = torch.cat(test_rewards)
test_rewards = accelerator.gather(test_rewards)
test_reward_mean, test_reward_std = test_rewards.mean().item(), test_rewards.std().item()
test_actions = torch.stack(test_actions).reshape(-1, args.gen_steps, args.batch_size, len(args.upd_set))
test_actions = test_actions.permute(0, 2, 3, 1).contiguous()
test_actions = accelerator.gather(test_actions).reshape(-1, len(args.upd_set), args.gen_steps)
actdict = bias_act(test_actions)
actdict_mean = {f'{k}_{i}': actdict[k][:, i].mean().item() for i in range(args.gen_steps) for k in args.upd_set}
if accelerator.is_main_process:
write_dict = dict(
eval_metrics={**res,
f'reward_mean': test_reward_mean,
f'reward_std': test_reward_std},
**{k: v.mean(dim=0).tolist() for k, v in actdict.items()}, **actdict_mean,
**counters,
)
logger.info(write_dict)
return res[f'fid_{args.n_samples}']
if __name__ == '__main__':
__spec__ = "ModuleSpec(name='builtins', loader=<class '_frozen_importlib.BuiltinImporter'>)"
from accelerate import DistributedDataParallelKwargs
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=(os.getenv('find_unused', 't') == 't'), broadcast_buffers=False)
args = get_args()
accelerator = accelerate.Accelerator(kwargs_handlers=[ddp_kwargs], mixed_precision='fp16')
logger.info(f'accelerator mixed precision: {accelerator.mixed_precision}')
device = accelerator.device
muse_gen_for_eval_imgs = MuseGenerator()
if args.dset == 'cc3m':
# prepare text encoder
from transformers import CLIPTokenizer, CLIPTextModelWithProjection
tokenizer = CLIPTokenizer.from_pretrained(f'assets/models--laion--CLIP-ViT-bigG-14-laion2B-39B-b160k')
tokenizer.pad_token_id = 0 # align with cc3m muse ckpt pretraining
txt_encoder = CLIPTextModelWithProjection.from_pretrained('assets/models--laion--CLIP-ViT-bigG-14-laion2B-39B-b160k', projection_dim=1280).to(device)
txt_encoder.eval()
txt_encoder.requires_grad_(False)
# prepare cc3m validation set
test_txt_dataset = CC3MTSV(args.data_root, split='val', txt_only=True)
test_txt_dataloader = DataLoader(test_txt_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
test_txt_dataloader = accelerator.prepare(test_txt_dataloader)
logger.info('test dataloader length: {}'.format(len(test_txt_dataloader)))
def get_test_txt_generator():
while True:
for caption in test_txt_dataloader:
real_ids = tokenizer(caption, max_length=77, padding='max_length', truncation=True,
return_tensors='pt').input_ids
real_txt_features = txt_encoder(input_ids=real_ids.to(device))
yield real_txt_features, caption
test_txt_generator = get_test_txt_generator()
# prepare empty context for classifier-free guidance
if args.dset == 'in256':
empty_ctx = torch.full((1,), 1000, dtype=torch.long, device=device)
elif args.dset == 'cc3m':
empty_prompt = ['']
empty_tok_res = tokenizer(empty_prompt, max_length=77, padding='max_length', truncation=True,
return_tensors='pt')
empty_ctx = txt_encoder(input_ids=empty_tok_res['input_ids'].to(device)).last_hidden_state.squeeze(0)
else:
raise NotImplementedError
bias_act = BiasAct()
train()