This is an example Go application which uses go-darknet.
Navigate to example folder:
cd $GOPATH/github.com/LdDl/go-darknet/example/base_example
Download dataset (sample of image, coco.names, yolov3.cfg, yolov3.weights).
./download_data_v3.sh
Note: you don't need coco.data file anymore, because script below does insert coco.names into 'names' filed in yolov3.cfg file (so AlexeyAB's fork can deal with it properly) So last rows in yolov3.cfg file will look like:
......
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
names = coco.names # this is path to coco.names file
Build and run program
go build main.go && ./main --configFile=yolov3.cfg --weightsFile=yolov3.weights --imageFile=sample.jpg
Output should be something like this:
truck (7): 49.5197% | start point: (0,136) | end point: (85, 311)
car (2): 36.3747% | start point: (95,152) | end point: (186, 283)
truck (7): 48.4384% | start point: (95,152) | end point: (186, 283)
truck (7): 45.6590% | start point: (694,178) | end point: (798, 310)
car (2): 76.8379% | start point: (1,145) | end point: (84, 324)
truck (7): 25.5731% | start point: (107,89) | end point: (215, 263)
car (2): 99.8783% | start point: (511,185) | end point: (748, 328)
car (2): 99.8194% | start point: (261,189) | end point: (427, 322)
car (2): 99.6408% | start point: (426,197) | end point: (539, 311)
car (2): 74.5610% | start point: (692,186) | end point: (796, 316)
car (2): 72.8053% | start point: (388,206) | end point: (437, 276)
bicycle (1): 72.2932% | start point: (178,270) | end point: (268, 406)
person (0): 97.3026% | start point: (143,135) | end point: (268, 343)