From 0e79592d57ead15de089ea9833536ac249117626 Mon Sep 17 00:00:00 2001 From: Max Horn Date: Fri, 3 May 2024 10:33:39 +0200 Subject: [PATCH] docs: Returns -> Return (#3678) ... and similar --- .../src/Objects/Types.jl | 26 +++++++++---------- experimental/GModule/GModule.jl | 2 +- experimental/LieAlgebras/src/CartanMatrix.jl | 10 +++---- experimental/LieAlgebras/src/CoxeterGroup.jl | 2 +- .../LieAlgebras/src/LinearLieAlgebra.jl | 2 +- experimental/LieAlgebras/src/RootSystem.jl | 26 +++++++++---------- experimental/Schemes/AlgebraicCycles.jl | 2 +- .../Schemes/MorphismFromRationalFunctions.jl | 2 +- experimental/Schemes/duValSing.jl | 2 +- .../src/StandardFiniteFields.jl | 2 +- .../AffineSchemes/Objects/Constructors.jl | 4 +-- .../standard_constructions.jl | 12 ++++----- .../ToricVarieties/ToricSchemes/attributes.jl | 4 +-- src/Modules/deRhamComplexes.jl | 4 +-- src/Rings/orderings.jl | 2 +- src/TropicalGeometry/groebner_fan.jl | 2 +- 16 files changed, 52 insertions(+), 52 deletions(-) diff --git a/experimental/DoubleAndHyperComplexes/src/Objects/Types.jl b/experimental/DoubleAndHyperComplexes/src/Objects/Types.jl index 9acd9ee37d1f..3a5486084c1e 100644 --- a/experimental/DoubleAndHyperComplexes/src/Objects/Types.jl +++ b/experimental/DoubleAndHyperComplexes/src/Objects/Types.jl @@ -181,7 +181,7 @@ end @doc raw""" can_compute_index(D::AbsDoubleComplexOfMorphisms, i::Int, j::Int) -Returns `true` if the entry `D[i, j]` is known or `D` knows how to compute it. +Return `true` if the entry `D[i, j]` is known or `D` knows how to compute it. """ function can_compute_index(D::AbsDoubleComplexOfMorphisms, i::Int, j::Int) can_compute_index(D, (i, j)) @@ -211,7 +211,7 @@ has_horizontal_map(dc::AbsDoubleComplexOfMorphisms, t::Tuple) = has_map(dc, 1, t @doc raw""" can_compute_horizontal_map(dc::AbsDoubleComplexOfMorphisms, i::Int, j::Int) -Returns `true` if `dc` can compute the horizontal morphism `dc[i, j] → dc[i ± 1, j]`, +Return `true` if `dc` can compute the horizontal morphism `dc[i, j] → dc[i ± 1, j]`, the sign depending on the `horizontal_direction` of `dc`, and `false` otherwise. """ can_compute_horizontal_map(C::AbsDoubleComplexOfMorphisms, i::Int, j::Int) = can_compute_map(C, 1, (i, j)) @@ -220,7 +220,7 @@ can_compute_horizontal_map(C::AbsDoubleComplexOfMorphisms, t::Tuple) = can_compu @doc raw""" vertical_map(dc::AbsDoubleComplexOfMorphisms, i::Int, j::Int) -Return the morphism ``dc[i, j] → dc[i, j ± 1]`` (the sign depending on the `vertical_direction` of `dc`). +Return the morphism ``dc[i, j] → dc[i, j ± 1]`` (the sign depending on the `vertical_direction` of `dc`). """ vertical_map(C::AbsDoubleComplexOfMorphisms, i::Int, j::Int) = map(C, 2, (i, j)) vertical_map(C::AbsDoubleComplexOfMorphisms, t::Tuple) = map(C, 2, t) @@ -240,7 +240,7 @@ has_vertical_map(C::AbsDoubleComplexOfMorphisms, t::Tuple) = has_map(C, 2, t) @doc raw""" can_compute_vertical_map(dc::AbsDoubleComplexOfMorphisms, i::Int, j::Int) -Returns `true` if `dc` can compute the vertical morphism `dc[i, j] → dc[i, j ± 1]`, +Return `true` if `dc` can compute the vertical morphism `dc[i, j] → dc[i, j ± 1]`, the sign depending on the `vertical_direction` of `dc`, and `false` otherwise. """ can_compute_vertical_map(C::AbsDoubleComplexOfMorphisms, i::Int, j::Int) = can_compute_map(C, 2, (i, j)) @@ -278,7 +278,7 @@ is_bounded(dc::AbsDoubleComplexOfMorphisms) = is_horizontally_bounded(dc) && is_ @doc raw""" has_right_bound(D::AbsDoubleComplexOfMorphisms) -Returns `true` if a universal upper bound ``i ≤ B`` for non-zero `D[i, j]` +Return `true` if a universal upper bound ``i ≤ B`` for non-zero `D[i, j]` is known; `false` otherwise. """ has_right_bound(C::AbsDoubleComplexOfMorphisms) = has_upper_bound(C, 1) @@ -286,7 +286,7 @@ has_right_bound(C::AbsDoubleComplexOfMorphisms) = has_upper_bound(C, 1) @doc raw""" has_left_bound(D::AbsDoubleComplexOfMorphisms) -Returns `true` if a universal upper bound ``B ≤ i`` for non-zero `D[i, j]` +Return `true` if a universal upper bound ``B ≤ i`` for non-zero `D[i, j]` is known; `false` otherwise. """ has_left_bound(C::AbsDoubleComplexOfMorphisms) = has_lower_bound(C, 1) @@ -294,7 +294,7 @@ has_left_bound(C::AbsDoubleComplexOfMorphisms) = has_lower_bound(C, 1) @doc raw""" has_upper_bound(D::AbsDoubleComplexOfMorphisms) -Returns `true` if a universal upper bound ``j ≤ B`` for non-zero `D[i, j]` +Return `true` if a universal upper bound ``j ≤ B`` for non-zero `D[i, j]` is known; `false` otherwise. """ has_upper_bound(C::AbsDoubleComplexOfMorphisms) = has_upper_bound(C, 2) @@ -302,7 +302,7 @@ has_upper_bound(C::AbsDoubleComplexOfMorphisms) = has_upper_bound(C, 2) @doc raw""" has_lower_bound(D::AbsDoubleComplexOfMorphisms) -Returns `true` if a universal upper bound ``B ≤ j`` for non-zero `D[i, j]` +Return `true` if a universal upper bound ``B ≤ j`` for non-zero `D[i, j]` is known; `false` otherwise. """ has_lower_bound(C::AbsDoubleComplexOfMorphisms) = has_lower_bound(C, 2) @@ -310,7 +310,7 @@ has_lower_bound(C::AbsDoubleComplexOfMorphisms) = has_lower_bound(C, 2) @doc raw""" right_bound(D::AbsDoubleComplexOfMorphisms) -Returns a bound ``B`` such that `D[i, j]` can be assumed to be zero +Return a bound ``B`` such that `D[i, j]` can be assumed to be zero for ``i > B``. Whether or not requests for `D[i, j]` beyond that bound are legitimate can be checked using `can_compute_index`. """ @@ -319,7 +319,7 @@ right_bound(C::AbsDoubleComplexOfMorphisms) = upper_bound(C, 1) @doc raw""" left_bound(D::AbsDoubleComplexOfMorphisms) -Returns a bound ``B`` such that `D[i, j]` can be assumed to be zero +Return a bound ``B`` such that `D[i, j]` can be assumed to be zero for ``i < B``. Whether or not requests for `D[i, j]` beyond that bound are legitimate can be checked using `can_compute_index`. """ @@ -328,7 +328,7 @@ left_bound(C::AbsDoubleComplexOfMorphisms) = lower_bound(C, 1) @doc raw""" upper_bound(D::AbsDoubleComplexOfMorphisms) -Returns a bound ``B`` such that `D[i, j]` can be assumed to be zero +Return a bound ``B`` such that `D[i, j]` can be assumed to be zero for ``j > B``. Whether or not requests for `D[i, j]` beyond that bound are legitimate can be checked using `can_compute_index`. """ @@ -337,7 +337,7 @@ upper_bound(C::AbsDoubleComplexOfMorphisms) = upper_bound(C, 2) @doc raw""" lower_bound(D::AbsDoubleComplexOfMorphisms) -Returns a bound ``B`` such that `D[i, j]` can be assumed to be zero +Return a bound ``B`` such that `D[i, j]` can be assumed to be zero for ``j < B``. Whether or not requests for `D[i, j]` beyond that bound are legitimate can be checked using `can_compute_index`. """ @@ -346,7 +346,7 @@ lower_bound(C::AbsDoubleComplexOfMorphisms) = lower_bound(C, 2) @doc raw""" is_complete(dc::AbsDoubleComplexOfMorphisms) -Returns `true` if for all indices `(i, j)` with `has_index(dc, i, j) = true` and +Return `true` if for all indices `(i, j)` with `has_index(dc, i, j) = true` and `dc[i, j]` non-zero, the vertex `(i, j)` is lying on an "island" of non-zero entries in the grid of the double complex, which is bounded by either zero entries or entries for indices `(i', j')` where `can_compute_index(dc, i', j') = false`. diff --git a/experimental/GModule/GModule.jl b/experimental/GModule/GModule.jl index d7ca9db9ecef..01b5c6d4cb4f 100644 --- a/experimental/GModule/GModule.jl +++ b/experimental/GModule/GModule.jl @@ -543,7 +543,7 @@ function _character(C::GModule{<:Any, <:AbstractAlgebra.FPModule{<:AbstractAlgeb end """ -Returns Z[G] and a function f that, when applied to a G-module M will return +Return Z[G] and a function f that, when applied to a G-module M will return a map representing the action of Z[G] on M: f(C) yields the extension of g -> action(C, g) diff --git a/experimental/LieAlgebras/src/CartanMatrix.jl b/experimental/LieAlgebras/src/CartanMatrix.jl index fbce231ae372..80cfa71e9683 100644 --- a/experimental/LieAlgebras/src/CartanMatrix.jl +++ b/experimental/LieAlgebras/src/CartanMatrix.jl @@ -8,7 +8,7 @@ @doc raw""" cartan_matrix(fam::Symbol, rk::Int) -> ZZMatrix -Returns the Cartan matrix of finite type, where `fam` is the family ($A$, $B$, $C$, $D$, $E$, $F$ $G$) +Return the Cartan matrix of finite type, where `fam` is the family ($A$, $B$, $C$, $D$, $E$, $F$ $G$) and `rk` is the rank of the associated the root system; for $B$ and $C$ the rank has to be at least 2, for $D$ at least 4. The convention is $(a_{ij}) = (\langle \alpha_i^\vee, \alpha_j \rangle)$ for simple roots $\alpha_i$. @@ -104,7 +104,7 @@ end @doc raw""" cartan_matrix(type::Tuple{Symbol,Int}...) -> ZZMatrix -Returns a block diagonal matrix of indecomposable Cartan matrices as defined by type. +Return a block diagonal matrix of indecomposable Cartan matrices as defined by type. For allowed values see `cartan_matrix(fam::Symbol, rk::Int)`. # Example @@ -251,7 +251,7 @@ end @doc raw""" cartan_bilinear_form(gcm::ZZMatrix; check::Bool=true) -> ZZMatrix -Returns the matrix of the symmetric bilinear form associated to the Cartan matrix from `cartan_symmetrizer`. +Return the matrix of the symmetric bilinear form associated to the Cartan matrix from `cartan_symmetrizer`. The keyword argument `check` can be set to `false` to skip verification whether `gcm` is indeed a generalized Cartan matrix. # Example @@ -273,7 +273,7 @@ end @doc raw""" cartan_type(gcm::ZZMatrix; check::Bool=true) -> Vector{Tuple{Symbol, Int}} -Returns the Cartan type of a Cartan matrix `gcm` (currently only Cartan matrices of finite type are supported). +Return the Cartan type of a Cartan matrix `gcm` (currently only Cartan matrices of finite type are supported). This function is left inverse to `cartan_matrix`, i.e. in the case of isomorphic types (e.g. $B_2$ and $C_2$) the ordering of the roots does matter (see the example below). The keyword argument `check` can be set to `false` to skip verification whether `gcm` is indeed a Cartan matrix of finite type. @@ -300,7 +300,7 @@ end @doc raw""" cartan_type_with_ordering(gcm::ZZMatrix; check::Bool=true) -> Vector{Tuple{Symbol, Int}}, Vector{Int} -Returns the Cartan type of a Cartan matrix `gcm` together with a vector indicating a canonical ordering +Return the Cartan type of a Cartan matrix `gcm` together with a vector indicating a canonical ordering of the roots in the Dynkin diagram (currently only Cartan matrices of finite type are supported). The keyword argument `check` can be set to `false` to skip verification whether `gcm` is indeed a Cartan matrix of finite type. diff --git a/experimental/LieAlgebras/src/CoxeterGroup.jl b/experimental/LieAlgebras/src/CoxeterGroup.jl index 80c7833e0f6b..6d0e908c15de 100644 --- a/experimental/LieAlgebras/src/CoxeterGroup.jl +++ b/experimental/LieAlgebras/src/CoxeterGroup.jl @@ -5,7 +5,7 @@ abstract type CoxeterGroup end @doc raw""" coxeter_from_cartan_matrix(mat::ZZMatrix; check::Bool=true) -> Bool -Returns the Coxeter matrix $m$ associated to the Cartan matrix `gcm`. If there is no relation between $i$ and $j$, +Return the Coxeter matrix $m$ associated to the Cartan matrix `gcm`. If there is no relation between $i$ and $j$, then this will be expressed by $m_{ij} = 0$ (instead of the usual convention $m_{ij} = \infty$). The keyword argument `check` can be set to `false` to skip verification whether `gcm` is indeed a generalized Cartan matrix. """ diff --git a/experimental/LieAlgebras/src/LinearLieAlgebra.jl b/experimental/LieAlgebras/src/LinearLieAlgebra.jl index 5f8443a8e344..960f023c0278 100644 --- a/experimental/LieAlgebras/src/LinearLieAlgebra.jl +++ b/experimental/LieAlgebras/src/LinearLieAlgebra.jl @@ -144,7 +144,7 @@ end @doc raw""" coerce_to_lie_algebra_elem(L::LinearLieAlgebra{C}, x::MatElem{C}) -> LinearLieAlgebraElem{C} -Returns the element of `L` whose matrix representation corresponds to `x`. +Return the element of `L` whose matrix representation corresponds to `x`. If no such element exists, an error is thrown. """ function coerce_to_lie_algebra_elem( diff --git a/experimental/LieAlgebras/src/RootSystem.jl b/experimental/LieAlgebras/src/RootSystem.jl index a28c5b4ad5e2..906572f16837 100644 --- a/experimental/LieAlgebras/src/RootSystem.jl +++ b/experimental/LieAlgebras/src/RootSystem.jl @@ -32,7 +32,7 @@ end root_system(cartan_matrix::ZZMatrix; check::Bool=true, detect_type::Bool=true) -> RootSystem root_system(cartan_matrix::Matrix{Int}; check::Bool=true, detect_type::Bool=true) -> RootSystem -Constructs the root system defined by the Cartan matrix. +Construct the root system defined by the Cartan matrix. If `check` is `true`, checks that `cartan_matrix` is a generalized Cartan matrix. Passing `detect_type=false` will skip the detection of the root system type. """ @@ -52,7 +52,7 @@ end @doc raw""" root_system(fam::Symbol, rk::Int) -> RootSystem -Constructs the root system of the given type. See `cartan_matrix(fam::Symbol, rk::Int)` for allowed combinations. +Construct the root system of the given type. See `cartan_matrix(fam::Symbol, rk::Int)` for allowed combinations. """ function root_system(fam::Symbol, rk::Int) cartan = cartan_matrix(fam, rk) @@ -95,7 +95,7 @@ end @doc raw""" cartan_matrix(R::RootSystem) -> ZZMatrix -Returns the Cartan matrix defining `R`. +Return the Cartan matrix defining `R`. """ function cartan_matrix(R::RootSystem) return R.cartan_matrix @@ -137,7 +137,7 @@ end @doc raw""" fundamental_weights(R::RootSystem) -> Vector{WeightLatticeElem} -Returns the fundamental weights corresponding to the `simple_roots` of `R`. +Return the fundamental weights corresponding to the `simple_roots` of `R`. """ function fundamental_weights(R::RootSystem) return [fundamental_weight(R, i) for i in 1:rank(R)] @@ -279,7 +279,7 @@ end @doc raw""" rank(R::RootSystem) -> Int -Returns the rank of `R`, i.e. the number of simple roots. +Return the rank of `R`, i.e. the number of simple roots. """ function rank(R::RootSystem) return nrows(cartan_matrix(R)) @@ -393,7 +393,7 @@ end @doc raw""" weyl_group(R::RootSystem) -> WeylGroup -Returns the Weyl group of `R`. +Return the Weyl group of `R`. """ function weyl_group(R::RootSystem) return R.weyl_group::WeylGroup @@ -402,7 +402,7 @@ end @doc raw""" weyl_vector(R::RootSystem) -> WeightLatticeElem -Returns the Weyl vector $\rho$ of `R`, which is the sum of all fundamental weights, +Return the Weyl vector $\rho$ of `R`, which is the sum of all fundamental weights, or half the sum of all positive roots. """ function weyl_vector(R::RootSystem) @@ -458,7 +458,7 @@ end @doc raw""" getindex(r::RootSpaceElem, i::Int) -> QQRingElem -Returns the coefficient of the `i`-th simple root in `r`. +Return the coefficient of the `i`-th simple root in `r`. """ function Base.getindex(r::RootSpaceElem, i::Int) return coeff(r, i) @@ -681,7 +681,7 @@ end @doc raw""" WeightLatticeElem(R::RootSystem, v::Vector{IntegerUnion}) -> WeightLatticeElem -Returns the weight defined by the coefficients `v` of the fundamental weights with respect to the root system `R`. +Return the weight defined by the coefficients `v` of the fundamental weights with respect to the root system `R`. """ function WeightLatticeElem(R::RootSystem, v::Vector{<:IntegerUnion}) return WeightLatticeElem(R, matrix(ZZ, rank(R), 1, v)) @@ -724,7 +724,7 @@ end @doc raw""" getindex(w::WeightLatticeElem, i::Int) -> ZZRingElem -Returns the coefficient of the `i`-th fundamental weight in `w`. +Return the coefficient of the `i`-th fundamental weight in `w`. """ function Base.getindex(w::WeightLatticeElem, i::Int) return coeff(w, i) @@ -740,7 +740,7 @@ end @doc raw""" iszero(w::WeightLatticeElem) -> Bool -Returns whether `w` is zero. +Return whether `w` is zero. """ function Base.iszero(w::WeightLatticeElem) return iszero(w.vec) @@ -757,7 +757,7 @@ end @doc raw""" conjugate_dominant_weight(w::WeightLatticeElem) -> WeightLatticeElem -Returns the unique dominant weight conjugate to `w`. +Return the unique dominant weight conjugate to `w`. """ function conjugate_dominant_weight(w::WeightLatticeElem) # conj will be the dominant weight conjugate to w @@ -822,7 +822,7 @@ end @doc raw""" reflect(w::WeightLatticeElem, s::Int) -> WeightLatticeElem -Returns the `w` reflected at the `s`-th simple root. +Return the `w` reflected at the `s`-th simple root. """ function reflect(w::WeightLatticeElem, s::Int) return reflect!(deepcopy(w), s) diff --git a/experimental/Schemes/AlgebraicCycles.jl b/experimental/Schemes/AlgebraicCycles.jl index 3ea04087e933..2e699b2392f1 100644 --- a/experimental/Schemes/AlgebraicCycles.jl +++ b/experimental/Schemes/AlgebraicCycles.jl @@ -446,7 +446,7 @@ end @doc raw""" irreducible_decomposition(D::AbsAlgebraicCycle) -Returns a divisor ``E`` equal to ``D`` but as a formal sum ``E = ∑ₖ aₖ ⋅ Iₖ`` +Return a divisor ``E`` equal to ``D`` but as a formal sum ``E = ∑ₖ aₖ ⋅ Iₖ`` where the `components` ``Iₖ`` of ``E`` are all sheaves of prime ideals. """ function irreducible_decomposition(D::AbsAlgebraicCycle) diff --git a/experimental/Schemes/MorphismFromRationalFunctions.jl b/experimental/Schemes/MorphismFromRationalFunctions.jl index cf17cc6bf1f5..a22f2139c2fb 100644 --- a/experimental/Schemes/MorphismFromRationalFunctions.jl +++ b/experimental/Schemes/MorphismFromRationalFunctions.jl @@ -223,7 +223,7 @@ end @doc raw""" realize_on_open_subset(Phi::MorphismFromRationalFunctions, U::AbsAffineScheme, V::AbsAffineScheme) -Returns a morphism `f : U' → V` from some `PrincipalOpenSubset` of `U` to `V` such +Return a morphism `f : U' → V` from some `PrincipalOpenSubset` of `U` to `V` such that the restriction of `Phi` to `U'` is `f`. Note that `U'` need not be maximal with this property! """ diff --git a/experimental/Schemes/duValSing.jl b/experimental/Schemes/duValSing.jl index 5838df813b9e..a359008e96ee 100644 --- a/experimental/Schemes/duValSing.jl +++ b/experimental/Schemes/duValSing.jl @@ -219,7 +219,7 @@ end @doc raw""" _check_du_val_at_point(IX:Ideal,Ipt::Ideal) -Returns a tuple `T` with the following data: +Return a tuple `T` with the following data: - `T[1]::Bool` returns whether `V(IX)` has at most a du Val singularity at `V(Ipt)` - `T[2]::Tuple` Type of du Val singularity at `V(Ipt)` diff --git a/experimental/StandardFiniteFields/src/StandardFiniteFields.jl b/experimental/StandardFiniteFields/src/StandardFiniteFields.jl index a716a1a0f504..08cc6bbacc64 100644 --- a/experimental/StandardFiniteFields/src/StandardFiniteFields.jl +++ b/experimental/StandardFiniteFields/src/StandardFiniteFields.jl @@ -451,7 +451,7 @@ end @doc raw""" standard_finite_field(p::Union{ZZRingElem, Integer}, n::Union{ZZRingElem, Integer}) -> FinField -Returns a finite field of order $p^n$. +Return a finite field of order $p^n$. # Examples ```jldoctest diff --git a/src/AlgebraicGeometry/Schemes/AffineSchemes/Objects/Constructors.jl b/src/AlgebraicGeometry/Schemes/AffineSchemes/Objects/Constructors.jl index 43f69a2fbe0e..8b28f4189485 100644 --- a/src/AlgebraicGeometry/Schemes/AffineSchemes/Objects/Constructors.jl +++ b/src/AlgebraicGeometry/Schemes/AffineSchemes/Objects/Constructors.jl @@ -32,7 +32,7 @@ affine_scheme(kk::Ring, R::Ring) = AffineScheme(kk, R) @doc raw""" spec(R::MPolyRing, I::MPolyIdeal) -Constructs the affine scheme of the ideal ``I`` in the ring ``R``. +Construct the affine scheme of the ideal ``I`` in the ring ``R``. This is the spectrum of the quotient ring ``R/I``. # Examples @@ -184,7 +184,7 @@ end @doc raw""" affine_space(kk::BRT, var_symbols::Vector{Symbol}) where {BRT<:Ring} -Creates the ``n``-dimensional affine space over a ring ``kk``, +Create the ``n``-dimensional affine space over a ring ``kk``, but allows more flexibility in the choice of variable names. The following example demonstrates this. diff --git a/src/AlgebraicGeometry/ToricVarieties/NormalToricVarieties/standard_constructions.jl b/src/AlgebraicGeometry/ToricVarieties/NormalToricVarieties/standard_constructions.jl index a1b8d190f7c1..3c137a1b49a6 100644 --- a/src/AlgebraicGeometry/ToricVarieties/NormalToricVarieties/standard_constructions.jl +++ b/src/AlgebraicGeometry/ToricVarieties/NormalToricVarieties/standard_constructions.jl @@ -1,7 +1,7 @@ @doc raw""" affine_space(::Type{NormalToricVariety}, d::Int) -Constructs the (toric) affine space of dimension `d`. +Construct the (toric) affine space of dimension `d`. # Examples ```jldoctest @@ -70,7 +70,7 @@ end @doc raw""" hirzebruch_surface(::Type{NormalToricVariety}, r::Int) -Constructs the r-th Hirzebruch surface. +Construct the `r`-th Hirzebruch surface. # Examples ```jldoctest @@ -210,7 +210,7 @@ end @doc raw""" normal_toric_variety_from_star_triangulation(P::Polyhedron) -Returns a toric variety that was obtained from a fine regular +Return a toric variety that was obtained from a fine regular star triangulation of the lattice points of the polyhedron P. This is particularly useful when the lattice points of the polyhedron in question admit many triangulations. @@ -253,7 +253,7 @@ end @doc raw""" normal_toric_varieties_from_star_triangulations(P::Polyhedron) -Returns the list of toric varieties obtained from fine regular +Return the list of toric varieties obtained from fine regular star triangulations of the polyhedron P. With this we can compute the two phases of the famous conifold transition. @@ -308,7 +308,7 @@ end @doc raw""" normal_toric_variety_from_glsm(charges::ZZMatrix) -This function returns one toric variety with the desired +Return one toric variety with the desired GLSM charges. This can be particularly useful provided that there are many such toric varieties. @@ -358,7 +358,7 @@ normal_toric_variety_from_glsm(charges::Vector{Vector{T}}) where {T <: IntegerUn @doc raw""" normal_toric_varieties_from_glsm(charges::ZZMatrix) -This function returns all toric variety with the desired +Return all toric variety with the desired GLSM charges. This computation may take a long time if there are many such toric varieties. diff --git a/src/AlgebraicGeometry/ToricVarieties/ToricSchemes/attributes.jl b/src/AlgebraicGeometry/ToricVarieties/ToricSchemes/attributes.jl index f1fb6feea73f..641315809f4c 100644 --- a/src/AlgebraicGeometry/ToricVarieties/ToricSchemes/attributes.jl +++ b/src/AlgebraicGeometry/ToricVarieties/ToricSchemes/attributes.jl @@ -5,7 +5,7 @@ @doc raw""" forget_toric_structure(X::AffineNormalToricVariety) -Returns a pair `(Y, iso)` where `Y` is a scheme without toric structure, +Return a pair `(Y, iso)` where `Y` is a scheme without toric structure, together with an isomorphism `iso : Y → X`. # Examples @@ -32,7 +32,7 @@ end @doc raw""" forget_toric_structure(X::NormalToricVariety) -Returns a pair `(Y, iso)` where `Y` is a scheme without toric structure, +Return a pair `(Y, iso)` where `Y` is a scheme without toric structure, together with an isomorphism `iso : Y → X`. # Examples diff --git a/src/Modules/deRhamComplexes.jl b/src/Modules/deRhamComplexes.jl index 146bb4609f9f..ebd8475b38e5 100644 --- a/src/Modules/deRhamComplexes.jl +++ b/src/Modules/deRhamComplexes.jl @@ -126,7 +126,7 @@ Internal method to check whether a module `M` was created as some ``p``-th exterior power of the Kaehler differentials ``Ω¹(R/𝕜)`` of some ``𝕜``-algebra ``R``. -Returns `(true, R, p)` in the affirmative case and +Return `(true, R, p)` in the affirmative case and `(false, base_ring(M), 0)` otherwise. """ function is_kaehler_differential_module(M::ModuleFP) @@ -138,7 +138,7 @@ end @doc raw""" de_rham_complex(R::Ring; cached::Bool=true) -Constructs the relative de Rham complex of a ``𝕜``-algebra `R` +Construct the relative de Rham complex of a ``𝕜``-algebra `R` as a `ComplexOfMorphisms`. """ function de_rham_complex(R::Ring; cached::Bool=true) diff --git a/src/Rings/orderings.jl b/src/Rings/orderings.jl index 9e12109a3485..1eaba27347d9 100644 --- a/src/Rings/orderings.jl +++ b/src/Rings/orderings.jl @@ -1357,7 +1357,7 @@ end @doc raw""" simplify(M::MonomialOrdering) -> MonomialOrdering -Returns a matrix ordering with a unique weight matrix. +Return a matrix ordering with a unique weight matrix. """ function Hecke.simplify(M::MonomialOrdering) w = canonical_matrix(M) diff --git a/src/TropicalGeometry/groebner_fan.jl b/src/TropicalGeometry/groebner_fan.jl index 9f568b2b92aa..c3fee3760058 100644 --- a/src/TropicalGeometry/groebner_fan.jl +++ b/src/TropicalGeometry/groebner_fan.jl @@ -152,7 +152,7 @@ end @doc raw""" maximal_groebner_cone(G::Oscar.IdealGens{<:MPolyRingElem}; homogeneityWeight::Union{Nothing,Vector{ZZRingElem}}=nothing) -Returns the maximal Groebner cone of a Groebner basis `G`, i.e., the closure of all weight vectors with respect to whose weighted ordering `G` is a Groebner basis (independent of tie-breaker). +Return the maximal Groebner cone of a Groebner basis `G`, i.e., the closure of all weight vectors with respect to whose weighted ordering `G` is a Groebner basis (independent of tie-breaker). If `homogeneityWeight==nothing`, assumes that `G` is not quasi-homogeneous, i.e. not homogeneous with respect to any positive weight vector, and returns a cone inside the positive orthant.