-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
175 lines (122 loc) · 5.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import time
import json
import random
import numpy as np
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
'''
Randomly shuffle the data and divide into batches
'''
def batchify(x, y, batch_size):
idx = list(range(len(x)))
random.shuffle(idx)
# convert to numpy array for ease of indexing
x = np.array(x)[idx]
y = np.array(y)[idx]
i = 0
while i < len(x):
j = min(i + batch_size, len(x))
batch_idx = idx[i : j]
batch_x = x[i : j]
batch_y = y[i : j]
yield batch_idx, batch_x, batch_y
i = j
'''
Perform a single training step by iterating over the entire training data once. Data is divided into batches.
'''
def train_step(model, opt, x, y, batch_size):
## x: list[num_examples, sents_per_example, features_per_sentence]
## y: list[num_examples, sents_per_example]
model.train()
total_loss = 0
y_pred = [] # predictions
y_gold = [] # gold standard
idx = [] # example index
for i, (batch_idx, batch_x, batch_y) in enumerate(batchify(x, y, batch_size)):
pred = model(batch_x)
loss = model._loss(batch_y)
opt.zero_grad()
loss.backward()
opt.step()
total_loss += loss.item()
y_pred.extend(pred)
y_gold.extend(batch_y)
idx.extend(batch_idx)
assert len(sum(y, [])) == len(sum(y_pred, [])), "Mismatch in predicted"
return total_loss / (i + 1), idx, y_gold, y_pred
'''
Perform a single evaluation step by iterating over the entire training data once. Data is divided into batches.
'''
def val_step(model, x, y, batch_size):
## x: list[num_examples, sents_per_example, features_per_sentence]
## y: list[num_examples, sents_per_example]
model.train()
total_loss = 0
y_pred = [] # predictions
y_gold = [] # gold standard
idx = [] # example index
for i, (batch_idx, batch_x, batch_y) in enumerate(batchify(x, y, batch_size)):
pred = model(batch_x)
loss = model._loss(batch_y)
total_loss += loss.item()
y_pred.extend(pred)
y_gold.extend(batch_y)
idx.extend(batch_idx)
assert len(sum(y, [])) == len(sum(y_pred, [])), "Mismatch in predicted"
return total_loss / (i + 1), idx, y_gold, y_pred
'''
Infer predictions for un-annotated data
'''
def infer_step(model, x):
## x: list[num_examples, sents_per_example, features_per_sentence]
model.eval()
y_pred = model(x) # predictions
return y_pred
'''
Report all metrics in format using sklearn.metrics.classification_report
'''
def statistics(data_state, tag2idx):
idx, gold, pred = data_state['idx'], data_state['gold'], data_state['pred']
rev_tag2idx = {v: k for k, v in tag2idx.items()}
tags = [rev_tag2idx[i] for i in range(len(tag2idx)) if rev_tag2idx[i] not in ['<start>', '<end>', '<pad>']]
# flatten out
gold = sum(gold, [])
pred = sum(pred, [])
print(classification_report(gold, pred, target_names = tags, digits = 3))
'''
Train the model on entire dataset and report loss and macro-F1 after each epoch.
'''
def learn(model, x, y, tag2idx, val_fold, args):
samples_per_fold = args.dataset_size // args.num_folds
val_idx = list(range(val_fold * samples_per_fold, val_fold * samples_per_fold + samples_per_fold))
train_idx = list(range(val_fold * samples_per_fold)) + list(range(val_fold * samples_per_fold + samples_per_fold, args.dataset_size))
train_x = [x[i] for i in train_idx]
train_y = [y[i] for i in train_idx]
val_x = [x[i] for i in val_idx]
val_y = [y[i] for i in val_idx]
opt = torch.optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.reg)
print("{0:>7} {1:>10} {2:>6} {3:>10} {4:>6}".format('EPOCH', 'Tr_LOSS', 'Tr_F1', 'Val_LOSS', 'Val_F1'))
print("-----------------------------------------------------------")
best_val_f1 = 0.0
model_state = {}
data_state = {}
start_time = time.time()
for epoch in range(1, args.epochs + 1):
train_loss, train_idx, train_gold, train_pred = train_step(model, opt, train_x, train_y, args.batch_size)
val_loss, val_idx, val_gold, val_pred = val_step(model, val_x, val_y, args.batch_size)
train_f1 = f1_score(sum(train_gold, []), sum(train_pred, []), average = 'macro')
val_f1 = f1_score(sum(val_gold, []), sum(val_pred, []), average = 'macro')
if epoch % args.print_every == 0:
print("{0:7d} {1:10.3f} {2:6.3f} {3:10.3f} {4:6.3f}".format(epoch, train_loss, train_f1, val_loss, val_f1))
if val_f1 > best_val_f1:
best_val_f1 = val_f1
model_state = {'epoch': epoch, 'arch': model, 'name': model.__class__.__name__, 'state_dict': model.state_dict(), 'best_f1': val_f1, 'optimizer' : opt.state_dict()}
data_state = {'idx': val_idx, 'loss': val_loss, 'gold': val_gold, 'pred': val_pred}
end_time = time.time()
print("Dumping model and data ...", end = ' ')
torch.save(model_state, args.save_path + 'model_state' + str(val_fold) + '.tar')
with open(args.save_path + 'data_state' + str(val_fold) + '.json', 'w') as fp:
json.dump(data_state, fp)
print("Done")
print('Time taken:', int(end_time - start_time), 'secs')
statistics(data_state, tag2idx)