-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_esim.py
431 lines (366 loc) · 17.6 KB
/
run_esim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#! /user/bin/evn python
# -*- coding:utf8 -*-
"""
@Author : Lau James
@Contact : LauJames2017@whu.edu.cn
@Project : MVLSTM
@File : run_esim.py
@Time : 18-12-18 下午1:04
@Software : PyCharm
@Copyright: "Copyright (c) 2018 Lau James. All Rights Reserved"
"""
import os
import sys
import time
import datetime
import argparse
import numpy as np
import tensorflow as tf
import tensorflow.contrib as tc
import csv
import logging
import jieba
from sklearn import metrics
from models.esim import ESIM
from data.dataloader import split_data, batch_iter_per_epoch, batch_iter_per_epoch_mask, get_q2q_label, load_pkl_set
def parse_args():
parser = argparse.ArgumentParser('Question to Question matching for QA task using ESIM model')
parser.add_argument('--prepare', action='store_true',
help='create the directories, prepare the vocab and embeddings')
parser.add_argument('--train', action='store_true',
help='train the model')
parser.add_argument('--evaluate', action='store_true',
help='evaluate the model on dev set')
parser.add_argument('--predict', action='store_true',
help='predict the match result fot test set on trained model')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
train_settings = parser.add_argument_group('train settings')
train_settings.add_argument('--dev_sample_percentage', type=float, default=0.1,
help='percentage of the training data to use for validation')
train_settings.add_argument('--optim', default='adam', help='optimizer type')
train_settings.add_argument('--learning_rate', type=float, default=0.1, help='optimizer type')
train_settings.add_argument('--weight_dacay', type=float, default=0, help='weight decay')
train_settings.add_argument('--dropout_keep_prob', type=float, default=0.5, help='dropout keep prob')
train_settings.add_argument('--batch_size', type=int, default=64, help='train batch size')
train_settings.add_argument('--epochs', type=int, default=20, help='train epochs')
train_settings.add_argument('--evaluate_every', type=int, default=100,
help='evaluate model on dev set after this many training steps')
train_settings.add_argument('--checkpoint_every', type=int, default=500,
help='save model after this many training steps')
train_settings.add_argument('--num_checkpoints', type=int, default=5,
help='number of checkpoints to store')
model_settings = parser.add_argument_group('model settings')
model_settings.add_argument('--algo', choices=['ESIM'], default='ESIM',
help='choose the algorithm to use')
model_settings.add_argument('--embedding_dim', type=int, default=300,
help='size of the embeddings')
model_settings.add_argument('--hidden_size', type=int, default=128,
help='size of LSTM hidden units')
model_settings.add_argument('--max_q_len', type=int, default=30,
help='max length of question')
model_settings.add_argument('--num_classes', type=int, default=2,
help='num of classes')
path_settings = parser.add_argument_group('path settings')
path_settings.add_argument('--merged_files',
default='./data/q2q_pair_merged.txt',
# default='./data/test.txt',
help='list of files that contain the preprocessed data')
path_settings.add_argument('--pkl_files',
default='./data/split_data_aug_mask.pkl',
# default='./data/test.txt',
help='list of files that contain the preprocessed data')
# path_settings.add_argument('--test_data_files',
# default='./data/testset.txt')
path_settings.add_argument('--tensorboard_dir', default='tensorboard_dir/ESIM',
help='saving path of tensorboard')
path_settings.add_argument('--save_dir', default='checkpoints/ESIM',
help='save base dir')
path_settings.add_argument('--log_path',
help='path of the log file. If not set, logs are printed to console')
misc_setting = parser.add_argument_group('misc settings')
misc_setting.add_argument('--allow_soft_placement', type=bool, default=True,
help='allow device soft device placement')
misc_setting.add_argument('--log_device_placement', type=bool, default=False,
help='log placement of ops on devices')
return parser.parse_args()
def get_time_dif(start_time):
end_time = time.time()
time_dif = end_time - start_time
return datetime.timedelta(seconds=int(round(time_dif)))
# def feed_data(q1_batch, q2_batch, y_batch, q1_mask_batch, q2_mask_batch, keep_prob, model):
# feed_dict = {
# model.input_q1: q1_batch,
# model.input_q2: q2_batch,
# model.input_y: y_batch,
# model.q1_mask: q1_mask_batch,
# model.q2_mask: q2_mask_batch,
# model.dropout_keep_prob: keep_prob
# }
# return feed_dict
def feed_data(q1_batch, q2_batch, y_batch, keep_prob, model):
feed_dict = {
model.input_q1: q1_batch,
model.input_q2: q2_batch,
model.input_y: y_batch,
model.dropout_keep_prob: keep_prob
}
return feed_dict
# def evaluate(q1_dev, q2_dev, y_dev, q1_mask_dev, q2_mask_dev, sess, model):
# """
# Evaluate model on a dev set
# :param q1_dev:
# :param q2_dev:
# :param y_dev:
# :param sess:
# :return:
# """
# data_len = len(y_dev)
# batch_eval = batch_iter_per_epoch_mask(q1_dev, q2_dev, q1_mask_dev, q2_mask_dev, y_dev)
# total_loss = 0.0
# total_acc = 0.0
# for q1_batch_eval, q2_batch_eval, q1_mask_batch_eval, q2_mask_batch_eval, y_batch_eval in batch_eval:
# batch_len = len(y_batch_eval)
# feed_dict = feed_data(q1_batch_eval, q2_batch_eval, y_batch_eval,
# q1_mask_batch_eval, q2_mask_batch_eval,
# keep_prob=1.0,
# model=model)
# loss, accuracy = sess.run([model.loss, model.accuracy], feed_dict)
# total_loss += loss * batch_len
# total_acc += accuracy * batch_len
# return total_loss/data_len, total_acc/data_len
def evaluate(q1_dev, q2_dev, y_dev, sess, model):
"""
Evaluate model on a dev set
:param q1_dev:
:param q2_dev:
:param y_dev:
:param sess:
:return:
"""
data_len = len(y_dev)
batch_eval = batch_iter_per_epoch(q1_dev, q2_dev, y_dev)
total_loss = 0.0
total_acc = 0.0
for q1_batch_eval, q2_batch_eval, y_batch_eval in batch_eval:
batch_len = len(y_batch_eval)
feed_dict = feed_data(q1_batch_eval, q2_batch_eval, y_batch_eval, keep_prob=1.0, model=model)
loss, accuracy = sess.run([model.loss, model.accuracy], feed_dict)
total_loss += loss * batch_len
total_acc += accuracy * batch_len
return total_loss/data_len, total_acc/data_len
def chinese_tokenizer(documents):
"""
中文文本转换为词序列
:param documents:
:return:
"""
for document in documents:
yield list(jieba.cut(document))
def prepare():
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print('Vocab processing ...')
q1, q2, y = get_q2q_label(args.merged_files)
start_time = time.time()
vocab_processor = tc.learn.preprocessing.VocabularyProcessor(max_document_length=args.max_q_len,
min_frequency=5,
tokenizer_fn=chinese_tokenizer)
q1_pad = np.array(list(vocab_processor.fit_transform(q1)))
q2_pad = np.array(list(vocab_processor.fit_transform(q2)))
del q1, q1_pad, q2, q2_pad, y
print('Vocab size: {}'.format(len(vocab_processor.vocabulary_)))
vocab_processor.save(os.path.join(args.save_dir, "vocab"))
# split
# split_data(args.merged_files, os.path.join(args.save_dir, "vocab"), args.pkl_files, mask=True)
# no mask
split_data(args.merged_files, os.path.join(args.save_dir, "vocab"), args.pkl_files)
time_dif = get_time_dif(start_time)
print('Vocab processing time usage:', time_dif)
# Vocab size: 25579
# Vocabulary Size: 25579
# Train / Dev / test split: 589870 / 73733 / 73733
# Vocab processing time usage: 0:04: 21
def train():
# Loading data
print('Loading data ...')
start_time = time.time()
# [q1_train, q2_train, y_train, q1_dev, q2_dev, y_dev, q1_test, q2_test, y_test, vocab_size, q1_mask_train,
# q2_mask_train, q1_mask_dev, q2_mask_dev, q1_mask_test, q2_mask_test] = load_pkl_set(args.pkl_files, mask=True)
# del q1_test, q2_test, q1_mask_test, q2_mask_test, y_test
q1_train, q2_train, y_train, q1_dev, q2_dev, y_dev, q1_test, q2_test, y_test, vocab_size = load_pkl_set(
args.pkl_files)
del q1_test, q2_test, y_test
time_dif = get_time_dif(start_time)
print('Time usage:', time_dif)
print('Configuring TensorBoard and Saver ...')
tensorboard_dir = args.tensorboard_dir
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
# ESIM model init
model = ESIM(
sequence_length=args.max_q_len,
num_classes=args.num_classes,
embedding_dim=args.embedding_dim,
vocab_size=vocab_size,
max_length=args.max_q_len,
hidden_dim=args.hidden_size,
learning_rate=args.learning_rate,
optimizer=args.optim
)
tf.summary.scalar('loss', model.loss)
tf.summary.scalar('accuracy', model.accuracy)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(tensorboard_dir)
# Configuring Saver
saver = tf.train.Saver()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# Create Session
session = tf.Session()
session.run(tf.global_variables_initializer())
writer.add_graph(session.graph)
print('Training and Deviation ...')
start_time = time.time()
total_batch = 0
best_acc_dev = 0.0
last_improved = 0
require_improvement = 30000 # Early stopping
tag = False
for epoch in range(args.epochs):
print('Epoch:', epoch + 1)
# batch_train = batch_iter_per_epoch_mask(q1_train, q2_train,
# q1_mask_train, q2_mask_train,
# y_train, args.batch_size)
batch_train = batch_iter_per_epoch(q1_train, q2_train, y_train, args.batch_size)
for q1_batch, q2_batch, y_batch in batch_train:
feed_dict = feed_data(q1_batch, q2_batch, y_batch, args.dropout_keep_prob, model=model)
if total_batch % args.checkpoint_every == 0:
# write to tensorboard scalar
summary = session.run(merged_summary, feed_dict)
writer.add_summary(summary, total_batch)
if total_batch % args.evaluate_every == 0:
# print performance on train set and dev set
feed_dict[model.dropout_keep_prob] = 1.0
loss_train, acc_train = session.run([model.loss, model.accuracy], feed_dict=feed_dict)
# loss_dev, acc_dev = evaluate(q1_dev, q2_dev, y_dev, q1_mask_dev, q2_mask_dev, session, model)
loss_dev, acc_dev = evaluate(q1_dev, q2_dev, y_dev, session, model=model)
if acc_dev > best_acc_dev:
# save best result
best_acc_dev = acc_dev
last_improved = total_batch
saver.save(sess=session, save_path=save_path)
improved_str = '*'
else:
improved_str = ''
time_dif = get_time_dif(start_time)
print('Iter: {0:>6}, Train Loss: {1:6.2}, Train Acc: {2:7.2%}, Val loss:{3:6.2}, '
'Val acc:{4:7.2%}, Time:{5}{6}'
.format(total_batch, loss_train, acc_train, loss_dev, acc_dev, time_dif, improved_str))
session.run(model.optimizer, feed_dict)
total_batch += 1
if total_batch - last_improved > require_improvement:
# having no improvement for a long time
print('No optimization for a long time, auto-stopping ...')
tag = True
break
if tag: # early stopping
break
def predict():
print('Loading test data ...')
start_time = time.time()
# [q1_train, q2_train, y_train, q1_dev, q2_dev, y_dev, q1_test, q2_test, y_test, vocab_size, q1_mask_train,
# q2_mask_train, q1_mask_dev, q2_mask_dev, q1_mask_test, q2_mask_test] = load_pkl_set(args.pkl_files, mask=True)
#
# del q1_train, q2_train, y_train, q1_dev, q2_dev, y_dev, q1_mask_train, q2_mask_train, q1_mask_dev, q2_mask_dev
q1_train, q2_train, y_train, q1_dev, q2_dev, y_dev, q1_test, q2_test, y_test, vocab_size = load_pkl_set(
args.pkl_files)
del q1_train, q2_train, y_train, q1_dev, q2_dev, y_dev
# ESIM model init
model = ESIM(
sequence_length=args.max_q_len,
num_classes=args.num_classes,
embedding_dim=args.embedding_dim,
vocab_size=vocab_size,
max_length=args.max_q_len,
hidden_dim=args.hidden_size,
learning_rate=args.learning_rate,
optimizer=args.optim
)
session = tf.Session()
session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(session, save_path=save_path)
print('Testing ...')
# loss_test, acc_test = evaluate(q1_test, q2_test, y_test, q1_mask_test, q2_mask_test, session, model)
loss_test, acc_test = evaluate(q1_test, q2_test, y_test, session, model=model)
print('Test loss:{0:6.2}, Test acc:{1:7.2%}'.format(loss_test, acc_test))
# test_batches = batch_iter_per_epoch_mask(q1_test, q2_test, q1_mask_test, q2_mask_test, y_test, shuffle=False)
test_batches = batch_iter_per_epoch(q1_test, q2_test, y_test, shuffle=False)
all_predictions = []
all_predict_prob = []
count = 0
# for q1_test_batch, q2_test_batch, q1_mask_batch, q2_mask_batch, y_test_batch in test_batches:
# batch_predictions, batch_predict_probs = session.run([model.predict, model.probs],
# feed_dict={
# model.input_q1: q1_test_batch,
# model.input_q2: q2_test_batch,
# model.q1_mask: q1_mask_batch,
# model.q2_mask: q2_mask_batch,
# model.dropout_keep_prob: 1.0
# })
for q1_test_batch, q2_test_batch, y_test_batch in test_batches:
batch_predictions, batch_predict_probs = session.run([model.y_pred, model.probs],
feed_dict={
model.input_q1: q1_test_batch,
model.input_q2: q2_test_batch,
model.dropout_keep_prob: 1.0
})
all_predictions = np.concatenate([all_predictions, batch_predictions])
if count == 0:
all_predict_prob = batch_predict_probs
else:
all_predict_prob = np.concatenate([all_predict_prob, batch_predict_probs])
count = 1
y_test = [float(temp) for temp in y_test]
# Evaluation indices
print('Precision, Recall, F1-Score ...')
print(metrics.classification_report(y_test, all_predictions,
target_names=['not match', 'match']))
# Confusion Matrix
print('Confusion Matrix ...')
print(metrics.confusion_matrix(y_test, all_predictions))
# Write probability to csv
# out_dir = os.path.join(args.save_dir, 'predict_prob_csv')
# print('Saving evaluation to {0}'.format(out_dir))
# with open(out_dir, 'w') as f:
# csv.writer(f).writerows(all_predict_prob)
time_dif = get_time_dif(start_time)
print('Time usage:', time_dif)
if __name__ == '__main__':
args = parse_args()
save_path = os.path.join(args.save_dir, 'best_validation')
logger = logging.getLogger('q2q_matching_esim')
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.info('Runing with args: {}'.format(args))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# if args.prepare:
# prepare()
# if args.train:
# train()
# if args.evaluate:
# predict()
# prepare()
train()
# predict()