-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
84 lines (81 loc) · 3.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import numpy as np
import math
import os
import time
import argparse
from data_preprocess.build_vocab import build_vocab
from exp.Exp import Exp
from utils.utils import set_seed
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="pure", help="[pure, mix]")
parser.add_argument("--model", type=str, default="ResnetTransformer", help="")
parser.add_argument("--n_epochs", type=int, default=30, help="")
parser.add_argument("--batch_size", type=int, default=128, help="")
parser.add_argument("--lr", type=float, default=0.001, help="")
parser.add_argument("--dim", type=int, default=256, help="") # d_model
parser.add_argument("--n_heads", type=int, default=4, help="")
parser.add_argument("--n_layers", type=int, default=3, help="")
parser.add_argument("--dropout", type=float, default=0.2, help="")
parser.add_argument("--img_size", type=int, default=224, help="") # image size
parser.add_argument("--max_len", type=int, default=500, help="")
parser.add_argument("--seed", type=int, default=2023, help="")
parser.add_argument("--device_id", type=int, default=0, help="")
# modes
parser.add_argument('--sample', type=bool, default=False, help='') # True: sampling
parser.add_argument('--dev', type=bool, default=False, help='')
parser.add_argument('--test', type=bool, default=False, help='') # True: labeling for test set
parser.add_argument("--pretrain", type=bool, default=False, help="") # MLM pretrain
parser.add_argument("--finetune", type=bool, default=False, help="")
# obj detection
parser.add_argument('--multi_sample', type=bool, default=False, help='') # True: sampling
parser.add_argument("--yolo", type=bool, default=False, help="")
# path config
parser.add_argument('--vocab_path', type=str, default="./vocab/vocab_plus.txt", help='')
args = parser.parse_args()
args.device = 'cuda:' + str(args.device_id) if torch.cuda.is_available() else 'cpu'
if args.task == "mix":
# include Chinese
args.vocab_path = "./vocab/vocab_plus_cn.txt"
print("Args:")
print(args)
set_seed(args.seed) # set random seed
setting = "{}_{}_d{}_nh{}_nl{}_ep{}".format(
args.model,
args.task, # [pure, mix]
args.dim,
args.n_heads,
args.n_layers,
args.n_epochs
)
args.setting = setting
# experiment
exp = Exp(args=args)
if args.sample:
exp.sample()
elif args.multi_sample:
exp.multi_sample()
elif args.yolo:
exp.yolo_dev()
elif args.test:
# labeling for test set
exp.test()
print("over!")
elif args.dev:
# temp
checkpoint_path = './checkpoints/train/' + args.setting + '/model.pth'
exp.model.load_state_dict(torch.load(checkpoint_path))
exp.dev()
print("over")
elif args.pretrain:
exp.pretrain()
print("over!")
elif args.finetune:
exp.finetune()
print("over!")
else:
exp.train()
print("over!")